REVISION : A2

PAGE: 1 OF 9

1/10W, 0603, Low Resistance Chip Resistor (Lead / Halogen Free)

1. Scope

This specification applies to 1.6mm x 0.8mm size 1/10W, fixed thick film low resistance value chip resistors rectangular type.

2. Type Designation

- (1)
- (2)
- (3)

Where

- (1) Size No.
- (2) Power Rating:

$$C = 1/10W$$

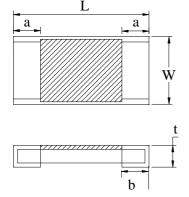
(3) Resistance value: Refer to paragraph 4-1

(4)

For example --

Four digits of number

$$R100 = 0.1\Omega$$


$$1R00 = 1\Omega$$

The "R" shall be used as a decimal point

(4) Resistance tolerance:

$$F = \pm 1.0\%$$
, $G = \pm 2\%$, $J = \pm 5\%$

3. Outline Dimensions

Code Letter	Dimension
L	1.60 ± 0.15
W	0.80 ± 0.15
t	0.45 ± 0.10
a	0.30 ± 0.20
b	0.30 ± 0.20

Unit: mm

REVISION : A2

PAGE : 2 OF 9

4. Ratings

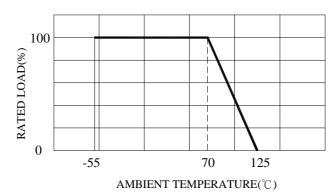

4-1 Specification

Table 1

Power Rating*	1/1	0W
Resistance Tolerance	1%(F), 2%(G), 5%(J)	
Resistance Range	$0.05\Omega \sim <0.1\Omega$	0.1Ω ~ <10Ω
Temperature Coefficient of Resistance(ppm/°C)	±300	±200

Note*:

Power Rating is based on continuous full load operation at rated ambient temperature of 70°C. For resistor operated at ambient temperature in excess of 70°C, the maximum load shall be derated in accordance with the following curve.

4-2 Rated Voltage

The d.c. or a.c. r.m.s. voltage shall be calculated from the following expression

$$V = \sqrt{P \times R}$$

Where V

: Rated voltage (V)

: Rated power (W)

: Nominal resistance (Ω)

4-3 Operating and Storage Temperature Range

REVISION : A2

PAGE : 3 OF 9

5. Characteristics

5-1 Electrical

Item	Specification and Requirement	Test Method (JIS 5201)
Temperature Coefficient of Resistance (TCR)	As follow table 1.	Room temperature Room temperature+100°C
Short Time Overload	∴ R:±1.0% Without damage by flashover, spark, arcing, burning or breakdown	(1) Applied voltage: 2.5 x rated voltage(2) Test time: 5 seconds
Insulation Resistance	Over $100 \text{ M}\Omega$ on Overcoat layer face up Over $1{,}000 \text{ M}\Omega$ on Substrate side face up	 Setup as figure 1 Test voltage: 100V_{DC}±15V_{DC} Test time: 60 + 10 / - 0 seconds
Voltage Proof	Resistance range:±1.0% Without damage by flashover, spark, arcing, burning or breakdown	 Setup as figure 1 Test voltage: 100V_{AC}(rms.) Test time: 60 + 10 / - 0 seconds

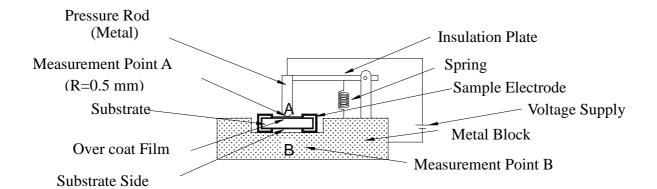


Figure 1 : Measurment Setup

REVISION : A2

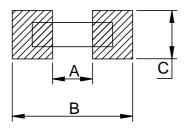
PAGE : 4 OF 9

5-2 Mechanical

Item	Specification and Requirement	Test Method (JIS 5201)
Solderability	The surface of terminal immersed shall be minimum of 95% covered with a new coating of solder	Solder bath: After immersing in flux, dip in 245 ± 5°C molten solder bath for 2 ± 0.5 seconds
Resistance to Solder Heat	\triangle R: ± 1.0% Without distinct deformation in appearance	 (1) Pre-heat: 100~110°C for 30 seconds (2) Immersed at solder bath of 270 ± 5°C for 10 ± 1 seconds (3) Measuring resistance 1 hour after test
Bending Test	\triangle R: \pm 1.0% Bending value: 3 mm for 30 \pm 1 Without mechanical damage such as break	
Solvent Resistance	Without mechanical and distinct damage in appearance	(1) Solvent: Trichloroethane or Isopropyl alcohol(2) Immersed in solvent at room temperature for 300 seconds

REVISION : A2

PAGE : 5 OF 9


SPECIFICATION FOR APPROVAL

Item	Specification and Requirement	Test Method (JIS 5201)
Rapid Change of Temperature	△ R:±1.0% Without distinct damage in appearance	(1) Repeat 5 cycle as follow: (-55 ± 3°C,30minutes) →(Room temperature, 2~3 minutes) →(+125 ± 2°C,30minutes) →(Room temperature 2~3 minutes) (2) Measuring resistance 1 hour after test
Moisture with Load	△ R: ±5.0% Without distinct damage in appearance	 (1) Environment condition: 40 ± 2°C,90~95% RH (2) Applied Voltage: rated voltage (3) Test period: (1.5 hour ON) →(0.5 hour OFF) cycled for total 1,000 + 48 / - 0 hours (4) Measuring resistance 1 hour after test
Load Life	△ R: ±5.0% Without distinct damage in appearance	 (1) Test temperature: 70 ± 3°C (2) Applied Voltage: rated voltage (3) Test period: (1.5 hour ON) →(0.5 hour OFF) cycled for total 1,000 + 48 / - 0 hours (4) Measuring resistance 1 hour after test
Low Temperature Store	△ R: ± 5.0% Without distinct damage in appearance	 (1) Store temperature: -55 ± 3°C for total 1,000 + 48 / - 0 hours (2) Measuring resistance 1 hour after test
High Temperature Store	△ R: ± 5.0% Without distinct damage in appearance	 (1) Store temperature: +125 ± 2°C for total 1,000 + 48 / - 0 hours (2) Measuring resistance 1 hour after test

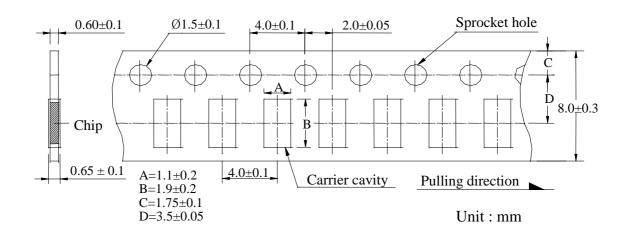
REVISION : A2

PAGE : 6 OF 9

6. Recommend Land Pattern Dimensions

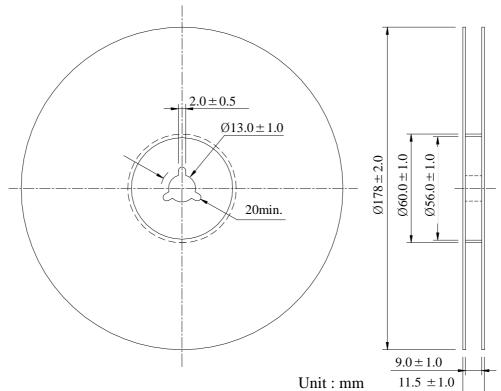
A	0.8~1.0
В	2.4~2.6
С	1.0~1.2

Unit: mm


REVISION : A2

PAGE : 7 OF 9

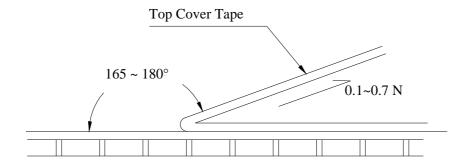
7.Packaging


7-1 Dimensions

7-1-1 Tape packaging dimensions

Remark: Leader tape length ≥ 30 cm(150 Hollow carrier cavity)

7-1-2 Reel dimensions


REVISION : A2

PAGE : 8 OF 9

7-2 Peel force of top cover tape

The peel speed shall be about 300 mm/min.

The peel force of top cover tape shall be between 0.1 to 0.7 N.

7-3 Numbers of taping 5,000 pieces /reel

7-4 Label making

The following items shall be marked on the reel.

- (1) Type designation.
- (2) Quantity
- (3) Manufacturing date code
- (4) Manufacturer's name

REVISION : A2

PAGE: 9 OF 9

8. Carenote

8-1 Care note for storage

- (1) Chip resistor shall be stored in a room where temperature and humidity must be controlled. (temperature 5 to 35°C, humidity 45 to 85% RH) However, a humidity keep it low, as it is possible.
- (2) Chip resistor shall be stored as direct sunshine doesn't hit on it.
- (3) Chip resistor shall be stored with no moisture, dust, a material that will make solderability inferior, and a harmful gas (Chloridation hydrogen, sulfurous acid gas, and sulfuration hydrogen)

8-2 Carenote for operating and handling

- (1) It is necessary to protect the edge and protection coat of resistors from mechanical stress.
- (2) Handle with care when printing circuit board (PCB) is divided or fixed on support body, because bending of printing circuit board (PCB) mounting will make mechanical stress for resistors.
- (3) Resistors shall be used with in rated range shown in specification. Especially, if voltage more than specified value will be loaded to resistor, there is a case it will make damage for machine because of temperature rise depending on generating of heat, and increase resistance value or breaks.
- (4) In case that resistor is loaded a rated voltage, it is necessary to confirms temperature of a resistor and to reduce a load power according to load reduction curve, because a temperature rise of a resistor depends on influence of heat from mounting density and neighboring element.
- (5) Observe Limiting element voltage and maximum overload voltage specified in each specification
- (6) If there is possibility that a large voltage (pulse voltage, shock voltage) charge to resistor, it is necessary that operating condition shall be set up before use.