

Industrial Automation Headquarters

Taiwan: Delta Electronics, Inc. Taoyuan Technology Center No.18, Xinglong Rd., Taoyuan District, Taoyuan City 33068, Taiwan TEL: +886-3-362-6301 / FAX: +886-3-371-6301

Asia

China: Delta Electronics (Shanghai) Co., Ltd. No.182 Minyu Rd., Pudong Shanghai, P.R.C. Post code : 201209 TEL: +86-21-6872-3988 / FAX: +86-21-6872-3996 Customer Service: 400-820-9595

Japan: Delta Electronics (Japan), Inc. Industrial Automation Sales Department 2-1-14 Shibadaimon, Minato-ku Tokyo, Japan 105-0012 TEL: +81-3-5733-1155 / FAX: +81-3-5733-1255

Korea: Delta Electronics (Korea), Inc. 1511, 219, Gasan Digital 1-Ro., Geumcheon-gu, Seoul, 08501 South Korea TEL: +82-2-515-5305 / FAX: +82-2-515-5302

Singapore: Delta Energy Systems (Singapore) Pte Ltd. 4 Kaki Bukit Avenue 1, #05-04, Singapore 417939 TEL: +65-6747-5155 / FAX: +65-6744-9228

India: Delta Electronics (India) Pvt. Ltd. Plot No.43, Sector 35, HSIIDC Gurgaon, PIN 122001, Haryana, India TEL: +91-124-4874900 / FAX: +91-124-4874945

Thailand: Delta Electronics (Thailand) PCL.

909 Soi 9, Moo 4, Bangpoo Industrial Estate (E.P.Z), Pattana 1 Rd., T.Phraksa, A.Muang, Samutprakarn 10280, Thailand TEL: +66-2709-2800 / FAX: +66-2709-2827

Australia: Delta Electronics (Australia) Pty Ltd. Unit 2, Building A, 18-24 Ricketts Road, Mount Waverley, Victoria 3149 Australia Mail: IA.au@deltaww.com TEL: +61-1300-335-823 / +61-3-9543-3720

Americas

USA: Delta Electronics (Americas) Ltd. 5101 Davis Drive, Research Triangle Park, NC 27709, U.S.A. TEL: +1-919-767-3813 / FAX: +1-919-767-3969

Brazil: Delta Electronics Brazil Ltd. Estrada Velha Rio-São Paulo, 5300 Eugênio de Melo - São José dos Campos CEP: 12247-004 - SP - Brazil TEL: +55-12-3932-2300 / FAX: +55-12-3932-237

Mexico: Delta Electronics International Mexico S.A. de C.V.

Gustavo Baz No. 309 Edificio E PB 103 Colonia La Loma, CP 54060 Tlalnepantla, Estado de México TEL: +52-55-3603-9200

EMEA

EMEA Headquarters: Delta Electronics (Netherlands) B.V. Sales: Sales.IA.EMEA@deltaww.com Marketing: Marketing.IA.EMEA@deltaww.com Technical Support: iatechnicalsupport@deltaww.com Customer Support: Customer-Support@deltaww.com Service: Service.IA.emea@deltaww.com

BENELUX: Delta Electronics (Netherlands) B.V. Automotive Campus 260, 5708 JZ Helmond, The Netherlands Mail: Sales.IA.Benelux@deltaww.com TEL: +31(0)40 800 3900

DACH: Delta Electronics (Netherlands) B.V. Coesterweg 45, D-59494 Soest, Germany Mail: Sales.IA.DACH@deltaww.com TEL: +49(0)2921 987 0

TEL: +31(0)40 800 3900

France: Delta Electronics (France) S.A. ZI du bois Challand 2,15 rue des Pyrénées,

Lisses, 91090 Evry Cedex, France Mail: Sales.IA.FR@deltaww.com TEL: +33(0)1 69 77 82 60

Iberia: Delta Electronics Solutions (Spain) S.L.U

Ctra. De Villaverde a Vallecas, 265 1º Dcha Ed. Hormigueras – P.I. de Vallecas 28031 Madrid TEL: +34(0)91 223 74 20 Carrer Llacuna 166, 08018 Barcelona, Spain Mail: Sales.IA.Iberia@deltaww.com

Italy: Delta Electronics (Italy) S.r.I.

Via Meda 2–22060 Novedrate(CO) Piazza Grazioli 18 00186 Roma Italy Mail: Sales.IA.Italy@deltaww.com TEL: +39 039 8900365

Russia: Delta Energy System LLC

Vereyskaya Plaza II, office 112 Vereyskaya str. 17 121357 Moscow Russia Mail: Sales.IA.RU@deltaww.com TEL: +7 495 644 3240

Turkey: Delta Greentech Elektronik San. Ltd. Sti. (Turkey)

Şerifali Mah. Hendem Cad. Kule Sok. No:16-A 34775 Ümraniye – İstanbul Mail: Sales.IA.Turkey@deltaww.com TEL: + 90 216 499 9910

MEA: Eltek Dubai (Eltek MEA DMCC)

OFFICE 2504, 25th Floor, Saba Tower 1, Jumeirah Lakes Towers, Dubai, UAE Mail: Sales.IA.MEA@deltaww.com TEL: +971(0)4 2690148

elta

Telescopic

Be

Ŧ

Conveyor

Integrated

Drive

LTC

Series

User Manua

Digitized Automation for a Changing World

Delta Telescopic Belt Conveyor Integrated Drive LTC Series User Manual

*We reserve the right to change the information in this user manual without prior notice. DELTA_IA-MDS_LTC_UM_EN_20221125

Copyright Notice

©Delta Electronics, Inc. All rights reserved.

All information contained in this user manual is the exclusive property of Delta Electronics Inc. (hereinafter referred to as "Delta ") and is protected by copyright law and all other laws. Delta retains the exclusive rights of this user manual in accordance with the copyright law and all other laws. No parts in this manual may be reproduced, transmitted, transcribed, translated or used in any other ways without the prior consent of Delta.

Limitation of Liability

The contents of this user manual are only for the use of the product manufactured by Delta. Except as defined in special mandatory laws, Delta provides this user manual "as is" and does not offer any kind of warranty through this user manual for using the product, either express or implied, including but not limited to the following: (i) this product will meet your needs or expectations; (ii) the information contained in the product is current and correct; (iii) the product does not infringe any rights of any other person. You shall bear your own risk to use this product.

In no event shall Delta, its subsidiaries, affiliates, managers, employees, agents, partners and licensors be liable for any direct, indirect, incidental, special, derivative or consequential damages (including but not limited to the damages for loss of profits, goodwill, use or other intangible losses) unless the laws contains special mandatory provisions to the contrary.

Delta reserves the right to make changes to the user manual and the products described in the user manual without prior notice and afterwards.

(Translation of the original instructions)

READ PRIOR TO INSTALLATION FOR SAFETY.

The content of this manual may be revised without prior notice. Please consult our distributors or download the latest version at http://www.deltaww.com/iadownload acmotordrive

Table of Contents

СНАРТЕ	R 1 INTRODUCTION	1-1
1-1	Nameplate Information	1-2
1-2	Model Name	1-2
1-3	Serial Number	1-3
1-4	Apply After Service by Mobile Device	1-4
1-5	RFI Jumper	1-5
1-6	Dimensions	1-8
СНАРТЕ	R 2 INSTALLATION	2-1
2-1	Mounting Clearance	2-2
2-2	Airflow and Power Dissipation	2-3
2-3	Packaging Method	2-4
СНАРТЕ	R 3 WIRING	3-1
3-1	System Wiring Diagram	3-3
3-2	Wiring	3-4
СНАРТЕ	R 4 MAIN CIRCUIT TERMINALS	4-1
4-1	Main Circuit Diagram	4-2
4-2	Main Circuit Terminal Specifications	4-3
СНАРТЕ	R 5 CONTROL TERMINALS	5-1
5-1	Slide Cover and Internal Devices	5-2
5-2	Control Terminal Specifications	5-3
5-3	Removing a Control Terminal Block	5-7
5-4	LED Indicators on Control Terminals	5-8
CHPATE	R 6 OPTIONAL ACCESSORIES	6-1
6-1	Digital Keypad PU08/PU08V	6-2
6-2	Circuit Breaker and Fuse	6-4
6-3	Reactors (AC and Zero Phase)	6-5
6-4	EMC Filter	6-9
СНАРТЕ	R 7 SPECIFICATIONS	7-1
7-1	460V Models	7-2
7-2	Environment for Operation, Storage and Transportation	7-5
7-3	Specification for Operation Temperature and Protection Level	7-6
7-4	Derating Curve	7-7
СНАРТЕ	R 8 DESCRIPTIONS OF DRIVE AND PLC OPERATIONS	8-1
8-1	An Overview of Functions	8-2
8-2	Descriptions of Digital Keypad PU08/PU08V	8-5
8-3	Function of Digital Keypad PU08/PU08V	8-8

8-4	Fault Code Description of Digital Keypad PU08/PU08V	8-9
8-5	VFDSoft Software	8-16
8-6	WPLSoft Software	8-17
СНАРТЕ	ER 9 SUMMARY OF PARAMETER SETTINGS	9-1
CHAPTE	ER 10 DESCRIPTIONS OF PARAMETER SETTINGS	
00	User Parameters	
01	Basic Parameters	
02	Operation Method Parameters	10-02-1
03	Output Function Parameters	
04	Input Function Parameters	10-04-1
05	Multi-step Speed Parameters	10-05-1
06	Protection Function Parameters	10-06-1
07	Motor Parameters	10-07-1
08	Special Parameters	10-08-1
09	Communication Parameters	10-09-1
10	Speed Feedback Control Parameters	10-10-1
СНАРТЕ	ER 11 TROUBLESHOOTING	
11-1	1 Over-current (oc)	
11-2	2 Over-voltage (ov)	
11-3	3 Low voltage (Lv)	11-4
11-4	4 Overheat (oH1)	11-5
11-5	5 Overload (oL)	11-6
11-6	მ Keypad Display is Abnormal	
11-7	7 Phase Loss (PHL)	11-8
11-8	3 Motor Does Not Run	
11-9	9 Motor Speed Cannot be Changed	11-10
11-1	10 Motor Stalls During Acceleration	11-11
11-1	11 Motor is Abnormal	11-12
11-1	12 Electromagnetic / Induction Noise	11-13
11-1	13 Operating Environment Condition	11-14
11-1	14 Affecting Other Machines	11-15
11-1	15 Indicator Description	11-16
СНАРТЕ	ER 12 FAULT CODES AND MAINTENANCE	12-1
12-1	1 Faults and Corrective Action	
12-2	2 Fault Codes and Descriptions	
12-3	3 Maintenance and Inspections	12-11
СНАРТЕ	ER 13 PLC FUNCTION APPLICATIONS	13-1
13-1	1 PLC Summary	
13-2	2 Notes Before Using PLC	
	-	

APPENDIX A. REVISION HISTORY	A-1
13-7 Fault Display and Treatment	13-123
13-6 Introduction to the Command Window	13-43
13-5 Various PLC Device Functions	13-28
13-4 Basic Principles of PLC Ladder Diagrams	13-16
13-3 Start-up	13-5

Issued Edition: 00

Drive Firmware Version: V1.01 (Refer to Parameter 00-06 on the product to get the firmware version) Issued Date: November, 2022

Chapter 1 Introduction

- 1-1 Nameplate Information
- 1-2 Model Name
- 1-3 Serial Number
- 1-4 Apply After Service by Mobile Device
- 1-5 RFI Jumper
- 1-6 Dimensions

Chapter 1 Introduction | LTC

After you receive the product, check the following:

- 1. Inspect the unit after unpacking to ensure that it was not damaged during shipment. Make sure that the part number printed on the package corresponds with the part number indicated on the nameplate.
- 2. Make sure that the voltage for the wiring is in the range indicated on the nameplate. Install the controller according to this manual.
- 3. Before applying the power, make sure that all the devices, including power, motor, control board and digital keypad are connected correctly.
- 4. When wiring the controller, make sure that the wirings for input terminals "R, S, T" and output terminals "U1, V1, W1, U2, V2, W2" are correct to prevent damage to the controller.

1-1 Nameplate Information

460V Models

1-2 Model Number

1-4 Apply After Service by Mobile Device

1-4-1 Location of Service Link Label

Service Link label is within the nameplate label

1-4-2 Service Link Label

Scan QR code to apply

- 1. Find the QR code sticker (as shown above).
- 2. Run the QR code reader App on your smart phone.
- 3. Point your camera at the QR Code. Hold your camera steady until the QR code comes into focus.
- 4. Access the Delta After-Sales Service website.
- 5. Fill in the information in the columns marked with an orange star.
- 6. Enter the CAPTCHA and click **Submit** to complete the request.

Cannot find the QR code?

- 1. Open a web browser on your computer or smart phone.
- 2. Enter <u>https://service.deltaww.com/ia/repair</u> in the browser address bar and press the Enter key.
- 3. Fill in the information in the columns marked with an orange star.
- 4. Enter the CAPTCHA and click **Submit** to complete the request.

1-5 RFI Jumper

RFI jumper:

LTC controller contains Varistors / MOVs that are connected from phase to phase and from phase to ground to prevent the controller from unexpected stop or damage caused by mains surges or voltage spikes. Because the Varistors / MOVs from phase to ground are connected to ground with the RFI jumper, note that removing the RFI jumper will disable the protection.

Removing the RFI jumper:

Pry the RFI jumper with a slotted screwdriver.

Chapter 1 Introduction | LTC

Isolating main power from ground:

When the power distribution system for the controller is a floating ground system (IT Systems) or an asymmetric ground system (Corner Grounded TN Systems), you must remove the RFI jumper. Removing the RFI jumper disconnects the internal capacitors from ground to avoid damaging the internal circuits and to reduce the ground leakage current.

Important points regarding ground connection:

- ☑ To ensure the safety of personnel, proper operation, and to reduce electromagnetic radiation, you must properly ground the motor and controller during installation.
- ☑ The diameter of the grounding cables must comply with the local safety regulations.
- \blacksquare You must connect the shielded cable to the controller's ground to meet safety regulations.
- \square Only use the shielded cable as the ground for equipment when the aforementioned points are met.
- ☑ When installing multiple controllers, do not connect the grounds of the controllers in series but connect each controller to ground. The following pictures show the correct and wrong ways to connect the grounds.

Pay particular attention to the following points:

- Do not remove the RFI jumper while the power is ON.
- ☑ Make sure the main power is OFF before removing the RFI jumper.
- ☑ Removing the RFI jumper also cuts the capacitor conductivity of the surge absorber to ground and the built-in EMC filter capacitors. Compliance with the EMC specifications is no longer guaranteed.
- ☑ Do not remove the RFI jumper if the mains power is a symmetrical grounded power system in order to maintain the efficiency for EMC circuit.
- ☑ Remove the RFI jumper when conducting high voltage tests. When conducting a high voltage test to the entire facility, disconnect the mains power and the motor if the leakage current is too high.

Floating Ground System (IT Systems)

A floating ground system is also called an IT system, an ungrounded system, or a high impedance/ resistance (greater than 30 Ω) grounded system.

- ☑ Disconnect the ground cable from the internal EMC filter.
- ☑ In situations where EMC is required, check for excess electromagnetic radiation affecting nearby low-voltage circuits. In some situations, the adapter and cable naturally provide enough suppression. If in doubt, install an extra electrostatic shielded cable on the power supply side between the main circuit and the control terminals to increase shielding.
- ☑ Do not install an external RFI/EMC filter. The external EMC filter passes through a filter capacitor and connects power input to the ground. This is very dangerous and damages the controller.

Asymmetric Ground System (Corner Grounded TN Systems)

Caution: Do not remove the RFI jumper while power to the input terminal of the controller is ON. In the following four situations, you must remove the RFI jumper. This is to prevent the system from grounding through the RFI and filter capacitors and damaging the controller.

Using the RFI jumper

Chapter 1 Introduction | LTC

1-6 Dimensions

Frame A

VFD2207LTC43A, VFD4015LTC43A

Unit: mm [inch]

Frame	W	W1	W2	Н	H1	D	S1	S2
А	221.0	140.0	140.0	246.0	232.0	94.6	5.2	5.2
	[8.70]	[5.51]	[5.51]	[9.69]	[9.13]	[3.72]	[0.20]	[0.20]

Digital Keypad (Optional)

VFD-PU08

Unit: mm [inch]

W	W1	W2	W3	Н	H1	H2	H3	D	D1	D2	D3	D4	S1
68.0	63.8	59.9	8.1	46.8	42.0	26.3	7.5	35.6	22.7	7.6	2.2	1.3	M3*0.
[2.68]	[2.51]	[2.68]	[0.32]	[1.84]	[1.65]	[1.04]	[0.30]	[1.40]	[0.89]	[0.30]	[0.09]	[0.05]	5 (2X)

[This page intentionally left blank]

Chapter 2 Installation

- 2-1 Mounting Clearance
- 2-2 Airflow and Power Dissipation
- 2-3 Packaging Method

2-1 Mounting Clearance

- ☑ Prevent fiber particles, scraps of paper, shredded wood, sawdust, metal particles, etc. from entering LTC or adhering to the heat sink.
- ☑ Install the controller in a metal cabinet to prevent the risk of fire.
- ☑ Install the controller in a Pollution Degree 2 (IEC 60664-1) environment with clean and circulating air. A clean and circulating environment means air without polluting substances and dust.

The products' figures shown below are for reference only. The actual products may look different.

Minimum mounting clearance

Frame	A [mm]	B [mm]	D [mm]
А	50	30	0

NOTE:

The minimum mounting clearances A–D stated in Table 2-1 apply to LTC Frame A. Failure to follow the minimum mounting clearances may cause the controller fan to malfunction and cause heat dissipation problems.

Frame A VFD2207LTC43A; VFD4015LTC43A

Table 2-2

Table 2-1

		Air	flow Rate	e for Cooli	Power Dissi	pation for C	ontroller			
Model	Flo	w Rate [c	fm]	Flov	v Rate [m	³ /hr]	Power D	Power Dissipation [watt]		
	External	Internal	Total	External	Internal	Total	Loss External (Heat sink)	Internal	Total	
VFD2207LTC43A	16	-	16	27.2	-	27.2	64	32	96	
VFD4015LTC43A	16	-	16	27.2	-	27.2	122	53	175	
 The required airf in a confined spa When installing r the required air v controllers. 	The required airflow shown in the table is for installing a single controlle in a confined space. When installing multiple controllers, the required air volume should be the required air volume for single controller × the number of the controllers.				ontroller uld be	 The heat di table is for i controller in When insta controllers, dissipation dissipated f the number Heat dissip is calculate current and 	ssipation sl installing a n a confined lling multipl volume of l should be t for single co of the cont ation for ea d by rated v l default car	nown in the single l space. e heat he heat ontroller × rollers. ch model voltage, rier.		

2-2 Airflow and Power Dissipation

Table 2-3

Chapter 2 Installation | LTC

2-3 Packaging Method

As the diagram below shows, there are two layers of packaging for the controller. One controller is in the inner small carton, and three controllers are in the outer big carton.

Figure 2-4

Chapter 3 Wiring

- 3-1 System Wiring Diagram
- 3-2 Wiring

Chapter 3 Wiring | LTC

After removing the packaging, verify that the power and control terminals are clearly noted. Read the following precautions before wiring.

Δ	☑ Disconnect AC input power before connecting any wiring to the controller.
///	☑ Even if the power has been turned off, a charge may still remain in the DC-link
\Box	capacitors with hazardous voltages before the POWER LED is OFF. Do NOT touch
DANGER	the internal circuits and components.
	☑ There are highly sensitive MOS components on the printed circuit boards. These
	components are especially sensitive to static electricity. Take anti-static measure
	before touching these components or the circuit boards.
	Never modify the internal components or wiring.
	oxdot Ground the controller by using the ground terminal. The grounding method must
	comply with the laws of the country where the controller is to be installed.
	☑ Do NOT install the controller in a location with high temperature, direct sunlight or
	inflammable materials or gases.
Λ	☑ Never connect the controller output terminals U1, V1, W1 or U2, V2, W2 directly to
	the AC mains circuit power supply.
	\blacksquare After finishing the wiring of the controller, check if U1, V1, W1 ; U2, V2, W2 are
CAUTION	short-circuited to PE with a multimeter. Do NOT power the controller if short circuits
	occur. Eliminate the short circuits before the controller is powered.
	☑ The rated voltage range for the controller must be from 342V to 528V for 460V
	models.
	oxdot Even if the three-phase AC motor is stopped, a charge with hazardous voltages
	may still remain in the main circuit terminals of the controller.
	oxdot The performance of electrolytic capacitor will degrade if it is not charged for a long
	time. It is recommended to charge the controller which is stored in no charge
	condition every 2 years for 3–4 hours to restore the performance of electrolytic
	capacitor in the controller. NOTE: When power up the controller by using
	connecting AC power to R/S/T terminals, use 220–240 V_{AC} of single-phase power
	between R and S terminals to charge the controller for 30 minutes (do not run the
	controller). Then charge the controller at 380–480 V_{AC} rated voltage of three-phase
	power between R, S, and T terminals for one hour (do not run the controller). By
	doing these, restore the performance of electrolytic capacitor before starting to run
	the controller. Do NOT run the controller at 100% rated voltage right away.
	☑ If the controller generates leakage current over AC 3.5 mA or over DC 10 mA on a
	grounding conductor, compliance with local grounding regulations or IEC61800-5-1
	standard is the minimum requirement for grounding.

3-1 System Wiring Diagram

Power input terminal	Power input terminal	Supply power according to the rated power specifications indicated in the manual. See Chapter 7 Specification.
D/ D/ D/	Circuit	
/ / Magnetic contactor	Breaker	There may be a large inrush current during power on.
A A AC reactor	or	Refer to Section 6-2 Circuit Breaker for details.
ලී ටී ටී (input terminal)	Fuse	
EMC filter EMC filter PE R S T	Magnetic contactor	Switching the power ON/OFF on the primary side of the magnetic contactor can turn the controller ON/OFF, but frequent switching can cause machine failure. Do not switch ON/OFF more than once an hour. Do not use the magnetic contactor as the power switch for the controller; doing so shortens the life of the controller.
PE U1 V1 W1 U2 V2 W2 PE	AC reactor (input terminal)	When the main power supply capacity is greater than 500 kVA, or when it switches into the phase capacitor, the instantaneous peak voltage and current generated may destroy the internal circuit of the controller. It is recommended that you install an input side AC reactor in the controller. This also improves the power factor and reduces power harmonics. The wiring distance should be within 10 m. Refer to Section 6-3 AC Reactor for details.
occum o-z winng.	Zero phase reactor	Used to reduce radiated interference, especially in environments with audio devices, and reduce input and output side interference. The effective range is AM band to 10 MHz. Refer to Section 6-3 AC Reactor for details.
	EMC Filter	Can be used to reduce electromagnetic interference. Refer to Section 6-4 EMC Filter.

3-2 Wiring

3-2-1 Wiring Diagram

Terminals	Descriptions
R, S, T	Mains input terminals (three-phase)
U1, V1, W1	VFD1 drive output terminals for connecting a three-phase induction motor.
U2, V2, W2	VFD2 drive output terminals for connecting a three-phase induction motor.
E E	Ground connection; comply with local regulations.

Main input power terminals

☑ DO NOT connect a three-phase model to single-phase power. R, S and T have no phase-sequence requirement; they can be connected in any sequence.

- ☑ You must install a NFB or circuit breaker between power input terminals and the main circuit terminals (R, S, T). Add a magnetic contactor (MC) to the power input wiring to cut off power quickly and reduce malfunctions when the controller protection function activates. Both ends of the MC should have an R-C surge absorber.
- ☑ Tighten the screws in the main circuit terminal to prevent sparks caused by screws loosened due to vibration.
- $\ensuremath{\boxtimes}$ Use voltage and current within the specifications in Chapter 7.
- ☑ The controller generates leakage current that flows through protective ground conductor to ground during its operation. ADD Type B residual current devices (RCDs), and choose a residual current of 30 mA above. Or choose generic RCDs with residual current larger than 200 mA and action time longer than 0.1 sec..

Output terminals of the main circuit

- If necessary, use an inductive filter only at the motor output terminals U1, V1, W1; U2, V2, W2 of the controller. DO NOT use phase-compensation capacitors or L-C (Inductance-Capacitance) or R-C (Resistance-Capacitance), unless approved by Delta.
- ☑ DO NOT connect phase-compensation capacitors or surge absorbers at the output terminals of the controller.
- ☑ Use well-insulated motors to prevent any electric leakage from the motors.

3-2-2 Switching between two modes: SINK (NPN) / SOURCE (PNP)

X terminals are compatible with NPN and PNP modes. For details on NPN and PNP mode wiring in internal and external power supply, see the figures below.

NOTE:

PNP (DIP switch to Source) is the factory default for NPN/PNP switch function. For using different modes, make sure the hardware wiring is correct, and select by DIP switches (DIP switch AS2). The total output capacity of 24V-DCM internal 24V power supply is 120 mA. For output capacity of external load, deduct the corresponding current consumption of the number of X terminals activated (6 mA for each terminal).

Chapter 4 Main Circuit Terminals

- 4-1 Main Circuit Diagram
- 4-2 Main Circuit Terminal Specifications

4-1 Main Circuit Diagram

Terminals	Descriptions
R, S, T	Mains input terminals (three-phase)
U1, V1, W1	VFD1 drive output terminals for connecting a three-phase induction motor.
U2, V2, W2	VFD2 drive output terminals for connecting a three-phase induction motor.
E E	Ground connection; comply with local regulations.

4-2 Main Circuit Terminal Specifications

Figure 4-2

Wiring precautions:

- It is recommended to use LUG, and the wiring should comply with local regulations.
- Dimensions for LUG show as Figure 4-3 below. Recommended LUG model is SNYS2-3.7 or RNYS2-3.7 from K. S. TERMINALS INC..
- Use insulator that is resistant to 600 V and temperature resistant to 105°C.
- If you install at Ta 45°C environment, use copper wires that have a voltage rating of 600 V and are temperature resistant to 70°C or above.
- If you install at Ta 45°C above environment, use copper wires that have a voltage rating of 600 V and are temperature resistant to 90°C or above.

Figure 4	-3
----------	----

	Main Circuit Terminals				
Model	R, S, T, U1, V1, W1, U2, V2, W2, PE				
	Wiring	Maximum	Minimum	Screw Size &	
	Specifications	Wire Gauge	Wire Gauge	Torque (±10%)	
VFD2207LTC43A	IEC / GB	2.5 mm ²	1.5 mm ²	M3.5	
	AWG	12 AWG	16 AWG	13.7 kgf-cm	
VFD4015LTC43A	IEC / GB	2.5 mm ²	2.5 mm ²	[11.9 lbf-in.]	
	AWG	12 AWG	14 AWG	[1.4 Nm]	

Chapter 5 Control Terminals

- 5-1 Slide Cover and Internal Devices
- 5-2 Control Terminal Specifications
- 5-3 Removing a Control Terminal Block
- 5-4 LED Indicators on Control Terminals

5-1 Slide Cover and Internal Devices

Detach the Slide Cover

Descriptions of Relays:

- 1. Y0–Y6: Removable, corresponding to multi-function output terminals Y0–Y6.
- 2. Y7: Removable, corresponding to multi-function output terminals Y7 (Y7-1 and Y7-2).
- 3. DIP switch AS2: Input contact X NPN (Sink) / PNP (Source) mode switch. Default is Source (PNP).
- 4. DIP switch AS1: PLC Run / Stop switch. Switch between Run/Stop status. Default is RUN.

NOTE: Do NOT touch the PIN of DIP switch AS1 or AS2 when switching them, as the figure above shows. This is to prevent electrical devices from being broken caused by static electricity through the human body.

5-2 Control Terminal Specifications

IO Terminal Block

Terminals	Terminal Type	Stripping Length (mm)	Maximum Wire Gauge AWG (mm ²)	Minimum Wire Gauge AWG (mm²)	Tightening Torque (±10%) (±10%)
Contact Y terminals	TB1 Integrated	7–8	14 (2.5)	14 (2.5)	5.1 kgf-cm [4.43 lbf-in] [0.5 N-m]
	TB2 Integrated	6–7	18 (1.0)	24 (0.2)	5.7 kgf-cm [4.96 lbf-in] [0.56 N-m]
24V terminals	TB3 Integrated	5–6	18 (1.0)	24 (0.2)	4.1 kgf-cm [3.54 lbf-in] [0.4 N-m]
Contact X terminals	TB4 Removable	7–8	18 (1.0)	28 (0.2)	Screw-free

Wiring precautions:

- The contacts X/Y are not short-circuited to any wires at the factory default. As shown as C in the figure above, AS1, the DIP switch for PLC Run/Stop for LTC, is switched to the right side RUN (PLC Run) by default, whereas AS2, the DIP switch for SINK (NPN) / SOURCE (PNP) modes of contacts X for PLC, is switched to the right side SOURCE (PNP) by default.
- As shown as (A) in the figure above, 24V-X contacts are short-circuited to SOURCE (PNP) mode, whereas X contacts-DCM are short-circuited to SINK (NPN) mode. For more information, see the wiring diagrams in Chapter 3 Wiring.
- Tighten the wiring with a 3.5 mm width and 0.6 mm thickness slotted screwdriver.
- Tighten the wiring with a PH1 slotted screwdriver.
- When wiring bare wires, ensure that they are perfectly arranged to go through the wiring holes.
- Select 450V for TB1 wirings, and 250V for TB2 wirings.
- How to reset EF fault when using EF terminal to connect to emergency stop circuit::
 - EF terminal is correctly connected to emergency stop circuit (channels between 24V (Digital signal common terminal Source) – emergency stop switch N.C. contact – EF terminal can be connected in series);
 - 2. Select one X contact (such as X0) to connect EF terminal in parallel to connect to emergency stop switch N.C. contact, and add one line of programming in PLC to realize:

2.1 When pressing the emergency stop button, both VFD1 and VFD2 of LTC stop outputting, and ERROR indicator flashes (EF fault will be triggered both on VFD1 and VFD2 and fault code EF is displayed on communication panel PU08 or PU08V);

2.2 When releasing the emergency stop button, ERROR indicator lights off, and at the same time, EF fault is reset (EF fault is no longer displayed on PU08 or PU08V).

X0 // X0 and EF connect to	(Y12) Reset poin t of VFD1
	END

NOTE: For details on using PLC for LTC, see Chapter 13 PLC Function Application in the user manual.

Terminals	Function	Default (PNP Mode)							
24V	Digital control signal common (Source)	+24 V _{DC} ± 5% 120 mA							
DCM	Digital control signal common (Sink)	Common terminal for multi-function input							
X0–X7, X10–X17, X20	Multi-function input terminals 0–20	Refer to address 15B3H bit0–7 external input status for function selections of terminals X0–X7 Refer to address 15B3H bit8–15 external input status for function selections of terminals X10–X17 Refer to address 15B4H bit0 external input status for function selections of terminal X20 ON: activation current 5.6 mA \ge 18 V _{DC}							
Terminals	Function	Default (PNP Mode)							
--------------	---	--	--	--	--	--	--	--	--
		OFF: cut-off voltage $\leq 4 V_{DC}$							
EF	External fault input	ON: activation current 5.6 mA \ge 18 V _{DC} OFF: cut-off voltage \le 4 V _{DC}							
SG+	Modbus RS-485								
SG-	- NOTE: SG+ and SG- are RS-485 serial communication terminals for PLC, and can also be used for uploading/downloading PLC programs								
RJ45	PIN 1, 2, 6, 7: Reserved PIN 3: GND PIN 4: SG- PIN 5: SG+ PIN8: EV								
Y0	Multi-function relay output 0 (N.O.)								
Y1	Multi-function relay output 1 (N.O.)								
Y2	Multi-function relay output 2 (N.O.)	Posistivo Lood							
C0	Y0–Y2 common terminal	2.5A(NO)/2.5A(NC)250Vac							
Y3	Multi-function relay output 3 (N.O.)	2.5A (N.O.) / 2.5A (N.C.) 30 V _{DC}							
Y4	Multi-function relay output 4 (N.O.)	Inductive Load							
Y5	Multi-function relay output 5 (N.O.)	2A (N.O.) / 2A (N.C.) 250 V _{AC}							
C1	Y3–Y5 common terminal 2A (N.O.) / 2A (N.C.) 30 V _{DC}								
Y6	Multi-function relay output 6 (N.O.)								
C2	Y6 common terminal								
Y7-1	Multi-function relay output 7-1 (Double pole single throw N.O.)	Resistive Load 1.2A (N.O.) / 1.2A (N.C.) 380 V _{AC}							
C3-1	Y7-1 common terminal	3A (N.O.) / 3A (N.C.) 250 V _{AC} 2A (N.O.) / 2A (N.C.) 30 V _{DC}							
Y7-2	Multi-function relay output 7-2 (Double pole single throw N.O.)	Inductive Load 1A (N.O.) / 1A (N.C.) 380 V _{AC}							
C3-2	Y7-2 common terminal	2.4A (N.O.) / 2.4A (N.C.) 250 V _{AC} 2A (N.O.) / 2A (N.C.) 30 V _{DC}							
DC POWER+	24 V _{DC} output positive								
PUWER+		+24 V _{DC} ± 3% 1.4A							
POWER-									
DC POWER-	24 V _{DC} output negative								

* Analog control signal wiring specification: 0.75 mm² [18 AWG] with shielded stranded wire.

5-3 Removing a Control Terminal Block

As the figure below shows, input terminal block (X contacts) can be detached manually, and output terminal block (Y contacts) cannot be detached manually.

5-4 LED Indicators on Control Terminals

- LTC with three-phase 380–480V_{AC} power: Power indicator is ON (green).
- PLC indicator: Green (ON): PLC run; OFF: PLC stop.
- ERROR indicator: Red (ON):

No	Indicator Status	ERROR	Flash Indication	
INO.	Indicator Status	DESCRIPTION	("-": ON; ".": OFF)	
1	ERROR is steady ON	PLC Error		
2	ERROR is ON for 1s and OFF for 1s			
2	(in circulation)	VI DI Elloi		
2	ERROR is ON for 2s and OFF for			
3	0.5s (in circulation)			

NOTE: Error indication priority: PLC Error > VFD1 Error > VFD2 Error

- FWD indicator: ON (green) when the running direction that VFD1 or VFD2 corresponds to the motor is forward.
- REV indicator: ON (green) when the running direction that VFD1 or VFD2 corresponds to the motor is reverse.
- Contact X input indicator: X0–X20, ON (green) when input signals are valid.
- Contact Y output indicator: Y0–Y7, ON (green) when output signals are valid. Among them, Y7-1 and Y7-2 use the same relay, that is, they use only one LED indicator to indicate ON/OFF.
- DC POWER output indicator: ON (green) when power output is normal.
- NOTE: Only one color displays when each of the indicators lights ON for LTC.

Chapter 6 Optional Accessories

- 6-1 Digital Keypad PU08/PU08V
- 6-2 Circuit Breaker and Fuse
- 6-3 Reactors (AC and Zero Phase)
- 6-4 EMC Filter

Chapter 6 Optional Accessories | LTC

The optional accessories listed in this chapter are available upon request. Installing additional accessories to your controller substantially improves the controller's performance. Select accessories according to your need or contact your local distributor for suggestions.

6-1 Digital Keypad PU08/PU08V

VFD-LTC series uses digital keypad panel to serve as function displays and operations

Digital Keypad Panel PU08:

Frequency Setting Potentiometer

Use this knob for main frequency command input

Mode Selection

Displays mode changes step by step for selection

ENTER Key

- Enters setting functions, such as forward (Frd), industry application functions (APP) etc.
- 2. Confirms parameter settings

Left-shift/Down Key

Changes value or parameters / Long press MODE key to switch between left-shift key and down key

There are four indicators on the panel

- STOP Stop indicator: lights ON when running stops.
- RUN Running indicator: lights ON when motor runs.
- FWD Forward running indicator: lights ON when motor runs in a forward direction.

Figure 6-1

• REV Reverse running indicator: lights ON when motor runs in a reverse direction.

Digital Keypad Panel PU08V:

Main Display Area Displays frequency, current, voltage, user-defined, fault codes, etc.

Status Display Area Indicates drive's running status: Run, Stop, Forward/Reverse, Potentiometer enable/disable

Up Key Changes parameters or values

RUN Key – VFD Run

STOP/RESET Key

Makes the drive stop running and resets faults

Figure 6-2

Mode Selection

Displays mode changes step by step for selection

ENTER Key

- Enters setting functions, such as forward (Frd), industry application functions (APP) etc.
- 2. Confirms parameter settings

Left-shift/Down Key

Changes value or parameters / Long press MODE key to switch between left-shift key and down key

Frequency Setting

Potentiometer

Use this knob for main frequency command input

6-2 Circuit Breaker and Fuse

Air Circuit Breaker (ACB)

It is recommended the surrounding temperature for ACB should be \geq 50°C. In the meanwhile, consider temperature derating for components with ON / OFF switch in accordance with the ambient temperature of the on-site distribution panel.

460V Models

Frame	Models	VFD1 Output	VFD2 Output	Input	Selection of
Frame	WIDGEIS	Current [A]	Current [A]	Current [A]	ACB [A]
A	VFD2207LTC43A	2.5	5.5	10.3	20
	VFD4015LTC43A	4.2	9.0	14.3	25

Table 6-1

Fuse Specification Chart:

Fuse

 \square Fuse specifications lower than the table below are allowed.

☑ Use certified fuses that comply with local regulations.

460V Models	Input Current [A]	Fuse Specification		
		I [A]	Bussmann P/N	
VFD2207LTC43A	10.3	25	JJS-25	
VFD4015LTC43A	14.3	30	JJS-30	

Table 6-2

6-3 Reactors (AC and Zero Phase)

AC Input Reactor

Install an AC reactor at the input side of an AC motor drive can increase line impedance, improve the power factor, reduce input current, increase system capacity, and reduce interference generated from the motor drive. It also reduces momentary voltage surges or abnormal current spikes from the mains power, further protecting the drive. For example, when the mains power capacity is higher than 500 kVA, or when using a phase-compensation capacitor, momentary voltage and current spikes may damage the AC motor drive's internal circuit. An AC reactor at the input side of the AC motor drive protects it by suppressing surges.

Installation Method:

Install an AC input reactor in series between the mains power and the three input phases R, S, T, as shown in the figure below:

Figure 6-3: AC input reactor installation diagram

Models	Rated Current [Arms]	Saturation Current [Arms]	3% Reactor [mH]	5% Reactor [mH]	Built-in DC Reactor
VFD2207LTC43A	8	12	3.03	5.05	No
VFD4015LTC43A	14.7	22.1	1.65	2.75	No

Table 6-3

Zero Phase Reactor

	Recommend	led Wire Size	Wiring Method	Maximum Wiring Quantity	
RF008X00A	≤ 8 AWG	≤ 8.37 mm²	Diagram A	Single-core*3	
T60006L2040W453	≤ 8 AWG	≤ 8.37 mm²	Diagram B	Four-core cable*1	

Table 6-4

NOTE 1: *Motor cable is 600V insulated cable wire

NOTE 2: The table above only considers the motor wire size

NOTE 3: For information on maximum wiring quantity, see Chapter 4 Main Circuit Terminals.

Diagram A

Pass the cable through at least one zero phase reactor.

Figure 6-4

Diagram B

Zero Phase Reactor R/L1 U ώ MOTOR ٧ S/L2 w T/L3 PE Π SHIELD SHIELD PE GROUND GROUND

Figure 6-5

Diagram C

Zero Phase Reactor

Figure 6-6

NOTE 1: The table above is for reference only. Use a suitable cable type and diameter so that the cable can easily pass through the center of the zero phase reactor.

NOTE 2: Do not pass the grounding cable through the zero phase reactor; only pass the motor wire and power cable through the zero phase reactor. Signal line is not subjected to the limits.

NOTE 3: For the zero phase reactor used for signal lines, make the position of the zero phase reactor adjacent to the drive, and fix it to prevent pulling caused by vibration.

Models*	Recommended Wire Size	Wiring Method	Qty	Applicable Network Wire / Signal Line
T60006L2040W453	≤8 AWG	Diagram C	1	Category 5e shielding, shielded twisted-pair cable, CAN standard cable (TAP-CB05, TAP-CB10)

NOTE 1: *Select zero phase reactors according to actual wire gauges. This table is for reference only. Table 6-5 **NOTE 2:** The size of some signal lines and communication cables may have limits due to mechanical considerations. Therefore, it is suggested to select a larger zero phase reactor.

Reference table for maximum motor wiring gauge when installing a zero reactor (including LUG width and motor cable temperature resistance)

Zaro phase reactor	Max. Wire Size /	Max. Wire Gauge AWG (1C*3)		VG (1C*3) Max. Wire Gauge AWG (4C	
Zero priase reactor	LUG Width	75°C	90°C	75°C	90°C
RF008X00A	13 MM	3 AWG	1 AWG	3 AWG	1 AWG
T60006L2040W453	11 MM	9 AWG	4 AWG	6 AWG	6 AWG

Figure 6-7

Unit: mm [inch]

Model	Α	В	С	D	E	F	G (Ø)	Torque
RF008X00A	98	73	36.5	29	56.5	86	5.5	$< 10 \mathrm{kgf/om^2}$
	5.2 [3.858]	5.2 [2.874]	5.2 [1.437]	5.2 [1.142]	5.2 [2.224]	5.2 [3.386]	5.2 [0.217]	< 10 kgt/cm ²

Table 6-7

6-7

Table 6-6

Ferrite Core

Model No.: T60006-L2040-W453

Figure 6-8

6-4 EMC Filter

The table below shows external EMC filter models for each motor drive. Choose corresponding zero phase reactors and applicable shielding cables according to the required noise emission and electromagnetic interference rating for the best configuration and anti-interference performance. If radiation emission (RE) is not a concern on site and you only need conducted emission (CE) to reach Class C3, you do not need to install a zero phase reactor on the input side to reach the EMC standard.

460V Models

LTC				Zero Pha	ise Reactor		Conducted Emission (CE)	Radiated Emission (RE)
Frame	Drive Model #	Rated Input Current [A]	EMC Filter Model #	Input Side (R / S / T)	Output Side (U / V / W)	Carrier Frequency	Length of Output Shielded Cable	EN61800-3
							C3	
	VFD2207I TC43A	10.3	EME014A43A	RF008X00A	RF008X00A			
Δ				or	or	< 8 kHz	25 m	C3
	VFD4015LTC43A	14.3	EMF018A43A	T60006L204 0W453	T60006L2040 W453	- 0 KHZ	25111	03

Table 6-8

Zero phase reactor installation position diagram:

1*: Install at the cable between the power supply and the EMC filter

2*: Install at the cable between the EMC filter and the drive

3*: Install at the cable between the drive and the motor

Figure 6-9

EMC Filter Dimension:

Model name: EMF014A43A

Unit: mm [inch]

Unit: mm [inch]

Figure 6-11

Figure 6-12

EMC Filter Installation

All electrical equipment, including AC motor drives, generates high frequency / low frequency noise and interferes with peripheral equipment by radiation or conduction during operation. Installing an EMC filter helps eliminate much interference. It is recommended to use DELTA EMC filter to have the best interference elimination performance.

Install and wire AC motor drive and EMC filter according to the instructions in the user manual to ensure compliance with the following regulations:

- 1. EN61000-6-4
- 2. EN61800-3: 1996
- 3. EN55011 (1991) Class A Group 1

General Precautions

To achieve optimal effect on suppressing interference of AC motor drive, follow the instructions in the user manual to install and wire the AC motor drive. Moreover, pay attention to the precautions below.

- 1. Install EMC filter and AC motor drive on the same metal plate.
- 2. Install AC motor drive on footprint EMC filter or install EMC filter as close as possible to the AC motor drive.
- 3. Do the wiring as short as possible.
- 4. Ground the metal plate.
- 5. Fix the cover of EMC filter and AC motor drive or grounding on the metal plate. Leave the contact area as large as possible.

Chapter 7 Specifications

- 7-1 460V Models
- 7-2 Environment for Operation, Storage and Transportation
- 7-3 Specification for Operation Temperature and Protection Level
- 7-4 Derating Curve

7-1 460V Models

	Frame	A					
	Model VFD LTC	VFD2207	7LTC43A	VFD4015LTC43A			
	Descriptions	VFD1	VFD2	VFD1	VFD2		
	Rated Output Capacity (kVA)	4.4	2.0	7.4	3.3		
	Rated Output Current (A)	5.5	2.5	9.0	4.2		
ing	Applicable Motor Output (kW)	2.2	0.75	4.0	1.5		
Rat	Applicable Motor Output (HP)	3	1	5.5	2		
Dutput	Overload Capacity	Sustains for 1 minute for every 5 minutes when the drive outputs 150% of					
	Max. Output Frequency (Hz)	0.1-400.0					
	Carrier Frequency (kHz)	2–12 (Default: 8)					
бĽ	Input Current (A)	10.3 14.3			.3		
Ratii	Rated Voltage / Frequency	Three-	phase 380–480 V _{A0}	c (-10 – +10%), 50 /	60 Hz		
put	Operating Voltage Range		342–5	28 V _{AC}			
Ц	Mains Frequency Range		47–6	3 Hz			
	Efficiency (%)	95					
Weight (kg)		2.	34	2.	2.44		
Cooling Method		Fan cooling					
	EMC Filter	Optional					
	DC Power (W)	35W, 24 V _{DC}					

NOTE:

1. Loading rate:

- 1.1 While VFD1 continuously runs with 100% of rated output current, VFD2 can still continuously run with 50% of rated output current or periodically run with 100% of rated output current (sustains for 30 seconds for every minute).
- 1.2 For applications other than telescopic belt conveyor, consider the loading conditions mentioned above. Contact Delta customer services for more information.

2. If carrier frequency is larger than 8 kHz, rated output current will decrease. See Figure 7-2 derating curve in Section 7-4.

3. Rated input current fluctuates due to not only connections between power adapter and reactors at input side, but also impedance at power side.

General Specifications

Item		Specifications		
	Control Mode	Sine wave PMW (V/F control)		
	Frequency Setting	0.01 Hz		
	Resolution			
	Output Frequency			
	Resolution			
	Torque	Auto-torque compensation, slip compensation, reaches 150% of rated		
	Characteristics	torque when starting torque is 5.0 Hz.		
Control	Overload Capacity	150% of rated output current for 60 seconds		
Control	Skip Frequency	Three points can be set from 0.1–400.0 Hz		
Characteristics	Accel / Decel Time	0.1–600 seconds (two steps of acceleration/deceleration time can be		
	Accel. / Decel. Time	set separately)		
	Stall Prevention	Set by 0–200% of the drive's rated current		
	Level			
		Can be operated from 0.1–400.0 Hz when the drive receives stop		
	DC Brake	signal. Starting time for DC current 0–100% of rated current is 0–60		
		seconds, and stopping time for that is also 0–60 seconds.		
V/F Curve		Adjustable V/F curve settings		
Protect	ion Functions	Over-voltage, over-current, low-voltage, external fault interruption,		
		motor overload, drive overload, drive overheat		
		Built-in AVR (Automatic Voltage Regulation) function		
		Acceleration/deceleration S-curve settings		
		Over-voltage, over-current stall prevention		
		Fault record		
		Torque compensation		
Built-in Function	s for Integrated Drive	Slip compensation		
		EF (External Fault) function		
		Carrier frequency adjustment		
		Upper and lower limit settings of output frequency		
		Parameter reset		
		Restart after fault		
		NPN/PNP mode selection		
Digital ł	Keypad Panel	Not included (optional accessories PU08/PU08V)		
Produc	t Compliance	CE		
		GB/T12668.3		

PLC Specifications

Item	Specifications	Note
Control Mode	Alternating back-and-forth scanning method	
Inputs/Outputs Control Mode	Cyclic refresh mode	
Execution speed	Basic commands (several µs)	Application commands (1–dozens of µs)
Programming Language	Commands and ladder diagrams	
Program Capacity	14000 steps	
Inputs/Outputs Points	Digital inputs (X): 17 + 4 = 21 Digital outputs (Y): 8 + 5 = 13	X: 17 points for user-defined, and 4 for internal pre-defined Y: 8 points for user-defined, and 5 for internal pre-defined

Table 7-3 Туре Device Item Range Function X0-X20, 17 points, Corresponds to external input Х External input relay points octal X21-X24, 4 points, Corresponds to internal input Х Internal input relay Total points octal 34 points Corresponds to external Y External output relay Y0-Y7, 8 points, octal output points Y10-Y14, 5 points, Corresponds to internal Y Internal output relay output points octal General purpose M0-M999, 1000 points Contacts can be used as Total Auxiliary Relav Μ M1000-M1279, 280 ON/OFF switch in the relay Special purpose 1280 points (bit) points program Timer indicated by TMR Total instruction. If timing reaches Т Timer 100 ms timer T0-T159, 160 points 160 points its target, the T contact of the same number will be ON. Counter indicated by CNT (DCNT) instruction. If 16-bit counting up Total С C0-C79, 80 points Counter counting reaches its target, 80 points (general purpose) the C contact of the same number will be ON. When the timing reaches the Т Current value of timer T0-T159, 160 points target, the contact of the timer will be ON. When the counting reaches Register С Current value of counter C0-C79, 16-bit counter, 80 points the target, the contact of the word counter will be ON. data (2 byte) Latched D0-D999, 1000 points Total Memory area for data D Data register 1620 points storage Special D1000–D1619 · 620 purpose points Single byte Available setting range: K-32,768 to K32,767 Κ Decimal Double byte Available setting range: K-2,147,483,648 to K2,147,483,647 Constant Single byte Available setting range: H0000 to HFFFF Hexadecimal Н Double byte Available setting range: H00000000 to HFFFFFFF

7-2 Environment for Operation, Storage and Transportation

Characteristics		Descriptions		
EMI Filter		Without built-in		
	Protection Level	IP20		
	Pollution Degree	2		
	Installation	An altitude of lower than 1000 m, indoor (no corrosive gases, liquids, and		
	Location	dust)		
	Surrounding	Non-condensing, non-freezing		
	Temperature	-10 – +45°C. Derate when operated with full-load in temperature above 45° C		
Environmont		to protect service life.		
Environment	Storage			
	Temperature	-20 - +80 C		
	Humidity	Below 90% RH (non-condensing)		
		2.0 mm, peak to peak value range from 2–13.2 Hz;		
	Vibration	0.7–1.0 G range from 13.2–55 Hz;		
		1.0 G, range from 55–512 Hz;		
		Compliance with IEC 60068-2-6		

7-3 Specification for Operation Temperature and Protection Level

Model	Frame	Upper Cover at Outer Case	Protection Level	Operation Temperature
VFDxxxxLTCxxx	<u>Frame A</u> 460V: 2.2 kW + 0.75 kW 4.0kW + +1.5kW	N/A	IP20	-10–45°C

7-4 Derating Curve

☑ When choosing the correct model, consider factors such as ambient temperature, altitude, carrier frequency, control mode, and so on. That is,

Actual rated current for application (A) = Rated output current (A) x Ambient temp. rated derating (%) x Altitude rated derating (%) x Carrier frequency rated derating (%)

Protection Level	Operating Environment		
	460V: If the AC motor drive operates at the rated current, the ambient temperature		
1020	needs to be between -10–45°C. If the temperature is above 45°C, decrease 2% of		
IP20	the rated current for every 1°C increase in temperature. The maximum allowable		
	temperature is 60°C.		

Table 7-7

Ambient Temperature Derating Curve

460V

Figure 7-1

The rated output current derating (%) when carrier frequency is the default value:

Ambient Temp. (Ta) /				
100% Load	35°C	45°C	50°C	60°C
Fc (kHz)				
Default value	100	100	90	70

Carrier Frequency Derating Curve

	7 0
ысше	1-/
iguio	' -

The rated output current derating (%) of 460V models for different carrier frequencies:

Fc (kHz) Model	8	9	10	11	12
VFDLTCA	100	94	88	83	78

Altitude Derating Curve

Condition	Operating Environment
	If the AC motor drive is installed at an altitude of 0–1000 m, follow normal operation
	restrictions. For altitudes of 1000–2000 m, decrease the drive's rated current by 1% or
High Altitude	lower the temperature by 0.5°C for every 100 m increase in altitude. The maximum
	altitude for corner grounded is 2000 m. If installing at an altitude higher than 2000 m is
	required, contact Delta for more information. 1 m = 1 meter

Table 7-10

The rated output current	derating (%)	for different altitudes above sea level:
--------------------------	--------------	--

Altitude above Sea Level (Meter)	0	1000	1500	2000
Output Current / Rated Current (%)	100	100	95	90

[This page intentionally left blank]

Chapter 8 Descriptions of Drive and PLC Operations

- 8-1 An Overview of Functions
- 8-2 Descriptions of Digital Keypad PU08/PU08V
- 8-3 Function of Digital Keypad PU08/PU08V
- 8-4 Fault Code Description of Digital Keypad PU08/PU08V
- 8-5 VFDSoft Software
- 8-6 WPLSoft Software

8-1 An Overview of Functions

Function descriptions of LTC:

The functions are described by numbers with circles in sequence, as shown in the diagram above:

(1) Power input (PE/R/S/T): Three-phase power and PE terminals.

(2) VFD1 drive output (PE/U1/V1/W1): VFD1 drive output and PE terminals.

(3) VFD2 drive output (U2/V2/W2/PE): VFD2 drive output and PE terminals.

(4) DC POWER (+/+/-/-): Built-in $24V_{DC}$ 35W power in the controller. For the use of external load.

(5) POWER indicator: Lights ON (green) when LTC is powered on.

(6) VFD1 potentiometer: Turn clockwise to increase the frequency command. Turn counterclockwise to decrease the frequency command.

(7) VFD2 potentiometer: Turn clockwise to increase the frequency command. Turn counterclockwise to decrease the frequency command.

(8) VFD1 FWD/REV indicator: FWD indicator lights ON (green) when VFD1 is set as motor's running direction in forward. REV indicator lights ON (green) when VFD1 is set as motor's running direction in reverse.

(9) VFD2 FWD/REV indicator: FWD indicator lights ON (green) when VFD2 is set as motor's running direction in forward. REV indicator lights ON (green) when VFD2 is set as motor's running direction in reverse.

(10) Y0–Y7 indicator: Output signal indicator of contacts Y. Lights ON (green) when the corresponding relays activate.

(11) Input terminal block:

(11.1) X0–X7, X10–X17, X20: Multi-function input terminals. You can switch between PNP/NPN modes. The default is PNP mode.

(11.2) 24V (two): Digital signal (contact X) common terminals (Source). The connection between 24V and contact X is PNP (Source) mode.

(11.3) DCM (two): Digital signal (contact X) common terminals (Sink). The connection between DCM and contact X is NPN (Sink) mode.

(11.4) EF: External fault signal input and can be connected in series to emergency stop switch (N.C.). If you do not use EF, EF must connect with digital signal common 24V (Source) terminal; otherwise, EF fault occurs.

(11.5) SG+, SG-: RS-485 serial communication terminals for PLC, and can also be used for uploading/downloading PLC programs.

(12) Output terminal block:

(12.1) Y0–Y6: Multi-function output terminals, corresponding to relays that support two load capacity: $240V_{AC}$ 2A and $30V_{DC}$ 2A.

(12.2) Y7-1, Y7-2: Multi-function output terminals (are activated simultaneously), corresponding to relays that support three load capacity: $380V_{AC}$ 1A, $240V_{AC}$ 2A, and $30V_{DC}$ 2A.

(12.3) C0–C2: Common terminals. C0 is the common terminal for Y0–Y2; C1 is the common terminal for Y3–Y5; C2 is the common terminal for Y6.

(12.4) C3-1 and C3-2: Common terminals. C3-1 is the common terminal for Y7-1; C3-2 is the common terminal for Y7-2.

(13) Relays:

(13.1) Y0–Y6: Removable, corresponding to multi-function output terminals Y0–Y6.

(13.2) Y7: Removable, corresponding to multi-function output terminals Y7 (Y7-1 and Y7-2).

(14) DIP switch AS2: Input contact X NPN (Sink) / PNP (Source) mode switch. Default is Source (PNP).

(15) DIP switch AS1: PLC Run / Stop switch. Switch between Run/Stop status. Default is RUN.

(16) VFD1 interface: RJ45 communication port. VFD1 RS-485 communication port is used for

connection between VFD1 and PC (or communication panel PU08/PU08V).

(17) VFD2 interface: RJ45 communication port. VFD1 RS-485 communication port is used for connection between VFD1 and PC (or communication panel PU08/PU08V).

(18) PLC interface: USB communication port. Used for connection between PLC and PC for the controller.

(19) Input (contact X) terminal indicator: Corresponding indicators to X0–X7, X10–X17, and X20. DC POWER indicator.

Chapter 8 Descriptions of Drive and PLC Operations | LTC

- (20) Left-side of PLC indicator: PLC Run indicator.
- (21) Left-side of ERROR indicator: LTC fault indicator.
- (22) Output terminal block: Y7-1, Y7-2, C3-1, and C3-2 terminals.
- (23) Output terminal block: Y0–Y6 and C0–C2 terminals.
- (24) Input terminal block: X0–X20, 24V, DCM, EF, SG+, and SG- terminals.
- (25) WARNING: WARNING, and output terminals.

Panel Description:

Indication	Description		
POWER indicator	POWER indicator: Lights ON when LTC is powered on.		
Potentiometer at	VFD1 potentiometer: Turn clockwise to increase the frequency command. Turn		
left-side	counterclockwise to decrease the frequency command.		
Potentiometer at	VFD2 potentiometer: Turn clockwise to increase the frequency command. Turn		
right-side	counterclockwise to decrease the frequency command.		
FWD indicator	Forward running indicator: lights ON when motor runs in a forward direction.		
REV indicator	Reverse running indicator: lights ON when motor runs in a reverse direction.		
Y0–Y7	Output signal indicator: lights ON when corresponding relays output signals.		

8-2 Descriptions of Digital Keypad PU08/PU08V

LTC series uses digital keypad panel to serve as function displays and operations

Digital Keypad Panel PU08 (see figure below)

Frequency Setting Potentiometer

Use this knob for main frequency command input

Mode Selection

Displays mode changes step by step for selection

ENTER Key

- 1. Enters setting functions, such as forward (Frd), industry application functions (APP) etc.
- 2. Confirms parameter settings

Left-shift/Down Key

Changes value or parameters / Long press MODE key to switch between left-shift key and down key

There are four indicators on the panel:

- STOP Stop indicator: lights ON when running stops.
- RUN Running indicator: lights ON when motor runs.
- FWD Forward running indicator: lights ON when motor runs in a forward direction.
- REV Reverse running indicator: lights ON when motor runs in a reverse direction.

Digital Keypad Panel PU08V (see figure below)

Main Display Area Displays frequency, current, voltage, user-defined, fault codes, etc.

Status Display Area — Indicates drive's running status:

Run, Stop, Forward/Reverse, Potentiometer enable/disable

Up Key Changes parameters or values

RUN Key VFD Run

STOP/RESET Key

Makes the drive stop running and resets faults

Mode Selection

Displays mode changes step by step for selection

ENTER Key

- 1. Enters setting functions, such as forward (Frd), industry application functions (APP) etc.
- 2. Confirms parameter settings

Left-shift/Down Key

Changes value or parameters / Long press MODE key to switch between left-shift key and down key

Frequency Setting

Potentiometer Use this knob for main frequency command input

Display	Descriptions			
RUN• FWD• REV• STOP	Displays the present frequency setting for the drive.			
RUN• FWD• REV•	Displays the actual frequency output from drive to motor			
RUN FWD LI I I I I I I STOP	Displays the user-defined value (U = F x Pr.00.05)			
RUN FWD	Displays the load current.			
RUN• FWD• REV• F C	Forward command			
RUN• FWD• REV• F	Reverse command			
RUN• FWD• REV•	Displays the count value.			
RUN• FWD• REV•	Displays a parameter item.			
RUN• FWD• REV• • • • • • • • • • • • • • • • • • •	Displays a parameter value.			
RUN• FWD• REV• • • • STOP	Displays an external fault.			
RUN• FWD• REV• C II C STOP	Displays "End" for approximately one second if the data has been accepted and			
	automatically stored in the register.			
RUN • STOP	Displays if the setting data is not accepted or data value exceeds the allowed			
REV •	range.			

Descriptions of Keypad Functions

8-3 Function of Digital Keypad PU08/PU08V

Reference Table for the Seven-segment Digital Keypad LED Display

Number	0	1	2	3	4	5	6	7	8	9
7-segment			7		IJ	C	L		Q	Q
display	U	•	' _	_/	•	_/	U	•	U	_
Letter	А	b	Сс	d	Е	F	G	Hh	li	Jj
7-segment	0	<u> </u>	r _	_	C	C	r	<u> </u>	, -	, -
display	•	Ū		O		1	U		"_	
Letter	K	L	n	Oo	Р	q	r	S	Tt	U
7-segment			_	Ō.	Ū	O				
display	I	<u> </u>		00	I	7	1	7		U
Letter	V	Y	Z							
7-segment		L	-							
display]	-							

8-4 Fault Code Description of Digital Keypad PU08/PU08V

The following fault codes, descriptions and corrective actions are displayed when the operation command source is set as digital keypad.

Fault Code	Fault Descriptions	Corrective Actions			
00	Over-current (oc) Abnormal increase in current	Check if the motor power corresponds with the AC motor drive output power. Check the wiring connections to U, V and W for possible short circuits. Check the wiring connections between the AC motor drive and motor for possible short circuits, and for short to ground. Check for loose contacts between the AC motor drive and the motor. Increase the acceleration time. Check for possible excessive loading on the motor.			
00	Over-voltage (ov) DC bus over-voltage during deceleration.	Check if the input voltage is within the rated AC motor drive input voltage range, and check for possible voltage spikes. If DC bus over-voltage is caused by motor regeneration, increase the deceleration time.			
o X 1	IGBT overheating (oH1) Heat sink temperature is too high, and exceeds the protection level.	Ensure that the ambient temperature is in the specified temperature range. Check if there is any obstruction on the heat sink or if the fan is running. Check if there is any insufficient ventilation space			
Lu	Low voltage (Lv) The AC motor drive detects that the DC bus voltage has fallen below its minimum value.	Check whether the input voltage is in the AC motor drive rated input voltage range. Check for abnormal load on the motor. Check if any single phase power input to three- phase model or phases loss.			
01	Overload (oL) The AC motor drive detects excessive drive output current. NOTE: The AC motor drive can sustain up to 150% of the rated current for a maximum of 60 seconds.	Check if the motor is overloaded. Reduce the torque compensation setting (Pr.07.02). Increase the drive output capacity.			
oll	Overload 1 (oL1) Internal electronic overload trip	Check if the motor is overloaded. Check if the motor rated current setting (Pr.07.00) is appropriate.			

Fault Code	Fault Descriptions	Corrective Actions
		Check the electronic thermal overload setting.
012	Overload 2 (oL2) Motor overload.	Check if the motor is overloaded. Adjust the over-torque detection settings to appropriate values (Pr.06.03–Pr.06.05).
XPF :	Hardware protection fault 1 (HPF1) Abnormal hardware protection wiring of the controller.	CC, OC (current clamp) abnormal hardware protection wiring, return the unit to the factory.
8855	Hardware protection fault 2 (HPF2) Abnormal hardware protection wiring of the controller.	OV abnormal hardware protection wiring, return the unit to the factory.
885 Y	Hardware protection fault 4 (HPF4) Abnormal hardware protection wiring of the controller.	OC abnormal hardware protection wiring, return the unit to the factory.
oc R	Over-current during acceleration (ocA)	Check for loose contacts between the AC motor drive and the motor. Check for poor insulation wiring from U-V-W to the motor. Increase the acceleration time Reduce the torque compensation setting (Pr.07.02). Replace the drive with a larger capacity model.
ocd	Over-current during deceleration (ocd)	Check for poor insulation wiring from U-V-W to the motor. Increase the deceleration time. Replace the drive with a larger capacity model.
ocn	Over-current during steady operation (ocn)	Check for poor insulation wiring from U-V-W to the motor. Check for possible shaft lock. Replace the drive with a larger capacity model.
88	External Fault (EF) 1. When multi-function input terminals (MI1–MI4) are set to external fault, the AC motor drive stops output.	The "EF" disappears once the signal source is cleared and reset.

Fault Code	Fault Descriptions	Corrective Actions		
	2. When changing the			
	communication address 2002H			
	bit0 = 1, the drive stops output.			
	EEPROM write error (cF1.0)			
c F l B	Internal EEPROM cannot be	Return to the factory for repair.		
	programmed.			
c	EEPROM write error (cF1.1)			
	Internal EEPROM cannot be	Return to the factory for repair.		
	programmed.			
		Press RESET key to reset all parameters to		
6.20	EEPROM read error (cF2.0)	defaults.		
cřćů	Internal EEPROM cannot be	If this solution does not work, return to the factory		
	read.	for repair.		
		Press RESET key to reset all parameters to		
	EEPROM read error (cF2.1)	defaults.		
$c \in C, i$	Internal EEPROM cannot be	If this solution does not work, return to the factory		
	read.	for repair.		
c F 3.0	Drive wiring detection fault	U-phase error, return to the factory for repair.		
	(cF3.0)			
CD I	Drive wiring detection fault	V-phase error, return to the factory for repair.		
cřji	(cF3.1)			
_ []]	Drive wiring detection fault	W-phase error, return to the factory for repair.		
$C \in D.C$	(cF3.2)			
	Drive wiring detection fault	DC bus wiring detection error, return to the		
	(cF3.3)	factory for repair.		
- 6 2 4	Drive wiring detection fault	Temperature sensor error, return to the factory for		
	(cF3.4)	repair.		
	Auto-	Check if the drive capacity matches the motor's.		
c F R	acceleration/deceleration	Check if the regenerative energy is too high.		
	failure (cFA)	Check for sudden load changes.		
cξ		Check the RJ45 connection between the AC		
		motor drive for loose wires and wiring to the		
	Communication fault (cE)	correct pins.		
		Check if the communication format is correct.		
		See the table of explanation of exception codes in		
		Parameter Group 09 Communication Parameters		
		in Chapter 10 for detailed information.		
codE	Software protection enabled	Password is locked.		
	(codE)			
PX1	Phase loss protection (PHL)	Check if the input power is three-phase.		
Chapter 8 Descriptions of Drive and PLC Operations | LTC

Fault Code	Fault Descriptions	Corrective Actions
0986	Multi-motor fault protection (oPHL)	Check if the motor wiring is normal.
005	Over-voltage at stop (ovS)	Check if the input voltage is within the rated AC motor drive input voltage range, and check for possible voltage spikes. If the phase-in capacitor or active power supply unit acts in the same power system, the input voltage may surge abnormally in a short time. In this case, install an AC reactor. Verify the wiring of the control circuit and the wiring/grounding of the main circuit to prevent interference. Check if other fault codes such as cF3.0–cF3.2 occur after cycling the power. If yes, return to the factory for repair. The ground short circuit current charges the capacitor in the main circuit through the power. Check if there is ground fault on the motor cable, wiring box and its internal terminals. Troubleshoot the ground fault.
ouß	Over-voltage during acceleration (ovA)	Check if acceleration is too slow (e.g. when lifting load decreases acceleration time). If yes, decrease the acceleration time. Check if the input voltage is within the rated AC motor drive input voltage range, and check for possible voltage spikes. If the phase-in capacitor or active power supply unit acts in the same power system, the input voltage may surge abnormally in a short time. In this case, install an AC reactor. Use over-voltage stall prevention function (Pr.06.00). Use Auto-acceleration and Auto-deceleration Setting (Pr.01.16) When ovA is triggered by too short acceleration time, execute the following actions: 1. Increase the acceleration time 2. Use Pr.06.00 over- voltage stall prevention function 3. Use Pr.01.17 S-curve for Acceleration Begin Time. The ground short circuit current charges the capacitor in the main circuit through the power. Check if there is ground fault on the motor cable,

Fault Code	Fault Descriptions	Corrective Actions
		wiring box and its internal terminals. Troubleshoot
		the ground fault.
		Verify the wiring of the control circuit and the
		wiring/grounding of the main circuit to prevent
		interference.
		Increase the setting values for Pr.01.10 and
		Pr.01.12 (deceleration time).
		Reduce the brake frequency.
		Use S-curve acceleration/deceleration.
		Use over-voltage stall prevention function
		(Pr.06.00).
		Use Auto-acceleration and Auto-deceleration
		Setting (Pr.01.16)
		Adjust the brake level (Pr.08.00).
		Check if the input voltage is within the rated AC
		motor drive input voltage range, and check for
	Over-voltage during	possible voltage spikes.
OUŐ	deceleration (ovd)	If the phase-in capacitor or active power supply
		unit acts in the same power system, the input
		voltage may surge abnormally in a short time. In
		this case, install an AC reactor.
		The ground short circuit current charges the
		capacitor in the main circuit through the power.
		Check if there is ground fault on the motor cable,
		wiring box and its internal terminals. Troubleshoot
		the ground fault.
		Verify the wiring of the control circuit and the
		wiring/grounding of the main circuit to prevent
		interference.
		Impulsive change of the load: 1. Reduce the load
		2. Adjust the brake level (Pr.08.00).
		Use over-voltage stall prevention function
		(Pr.06.00).
		Check if the input voltage is within the rated AC
		motor drive input voltage range, and check for
	Over-voltage during constant	possible voltage spikes.
0011	speed (ovn)	If the phase-in capacitor or active power supply
		unit acts in the same power system, the input
		voltage may surge abnormally in a short time. In
		this case, install an AC reactor.
		The ground short circuit current charges the
		capacitor in the main circuit through the power.
		Check if there is ground fault on the motor cable,

Fault Code	Fault Descriptions	Corrective Actions
		wiring box and its internal terminals. Troubleshoot
		the ground fault.
		Verify the wiring of the control circuit and the
		wiring/grounding of the main circuit to prevent
		interference.
	Polt conveyer drive (VED1)	Stall function is enabled for VDF1 of LTC. If
5686		materials are jammed and stall conditions are
	stall failure (StAL)	met, fault code StAL is triggered.

Reset

After the causes that may trigger fault codes are corrected, execute either of the following actions to clear the trip: 1. Press RESET key on the panel (as shown in the figure below); 2. Set the external terminal to "fault reset command" and set this terminal to be ON; 3. Send the fault reset command through communications. Make sure the RUN command or signal is OFF before executing RESET to prevent damage to the drive or personal injury due to immediate operation after reset.

Digital Keypad Panel

8-5 VFDSoft Software

VFDSoft, a monitoring software for Detla drives, widely supports a variety of VFD series such as VFD-EL, VFD-C2000, VFD-M300, and LTC. VFDSoft connects with VFD1 and VFD2 of LTC through either Delta USB/RS-485 converting module IFD6500 or RJ45 port to monitor VFD's working.

For detailed information, download VFDsoft User Manual (as shown in the figure below) at Delta website: <u>https://downloadcenter.deltaww.com/en-</u>

US/DownloadCenter?v=1&CID=06&itemID=06010501&dataType=8&sort expr=cdate&sort dir=DESC

Software

8-6 WPLSoft Software

WPLSoft is a program editing software used under WINDOWS operating system in Delta's DVP Series PLC for VFD-C2000 and VFD-LTC. WPLSoft not only provides functions of PLC program planning and Windows editing (such as cut, paste, copy, multi-window, etc.), but also Chinese/English notes editing function and other useful functions like register editing & setting, file reading & saving, as well as points diagram monitoring and setting, and so on.

Item	System Requirements	
Operating System	Windows 95 / 98 / 2000 / NT / ME / XP / 10	
CPU	Pentium 90 above	
Storage	16MB above (32MB above recommended)	
Drivo	Disk space: 100MB above at a minimum	
Drive	An optical disc drive (for installing WPLSoft)	
Display	Resolution: 800 × 600, 16 colors above. It is recommended to set screen	
Display	width × height to 800 × 600 pixels.	
Mouse Mouse for general purposes or compatible with Windows		
Printer	Printers with Windows drivers	
RS-485 Port At least one RS-485 port that can be connected with PLC		

Minimum system requirements for installing WPLSoft software:

Visit the download center at Delta's website to download and install the software WPLSoft:

After finishing installation, WPLSoft program will be created in the specified default sub-directory under "C:\Program Files\Delta Industrial Automation\WPLSoft x.xx".

For detailed information on how to use WPLSoft, see Chapter 13 PLC Function Applications.

[This page intentionally left blank]

Chapter 9 Summary of Parameter Settings

- 00 User Parameters
- 01 Basic Parameters
- 02 Operation Method Parameters
- 03 Output Function Parameters
- 04 Input Function Parameters
- 05 Multi-step Speed Parameters
- 06 Protection Function Parameters
- 07 Motor Parameters
- **08 Special Parameters**
- **09** Communication Parameters
- 10 Speed Feedback Control Parameters

Chapter 9 Summary of Parameter Settings | LTC

This chapter provides a summary of parameter (Pr.) setting ranges and defaults. You can set, change, and reset parameters through the digital keypad PU08/PU08V.

NOTE:

- 1. \checkmark : You can set this parameter during operation.
- 2. For more details on parameters, refer to Chapter 10 Descriptions of Parameter Settings.

00 User Parameters

	Pr.	Parameter Name	Setting Range	Default
			5: 460V, 1HP	
	00.00		7: 460V, 2HP	Read
	00.00	AC Motor Drive Identity Code	9: 460V, 3HP	only
			11: 460V, 5.5HP	
	00.01	AC Motor Drive Rated Current	Display by models	Read
	00.01	Display	Display by models	only
			0: Can be read/written	
			1: Read only	
	00.02	Parameter Reset	8: Keypad locked	0
			9: Reset all parameter settings to defaults (50 Hz)	
			10: Reset all parameter settings to defaults (60 Hz)	
			0: F (frequency command)	
	00.02	Ctart un Dianlau	1: H (output frequency)	0
~	00.03	Start-up Display	2: A (output current)	U
			3: U (user-defined) see Pr.00.04	
	00.04	Content of Multi-function Display (User-Defined)	0: Display user-defined (U)	
			1: Display external terminal counter value (c)	
			2: Display the status of multi-function input terminal	
			(d)	
×			3: Displays DC bus voltage (u) (Unit: V _{DC})	0
			4: Display output voltage (E) (Unit: V _{AC})	
			6: Display power factor angle (n)	
			7: Display power (P) (Unit: kW)	
			11: Display IGBT temperature (h) (Unit: °C)	
×	00.05	User-Defined Coefficient K	0.00–160.00	1.00
	00.06		Pood only (Display by default)	Read
	00.00		Read only (Display by delauit)	only
	00.07	Reserved	None	None
	00.08	Parameter Protection	0–9999	0
	00.00	Password Input	0–2: the number of wrong password attempts	U
		Parameter Protection	0–9999	
	00.09	Password Satting	0: No password protection or password is entered	0
		Password Setting	correctly (Pr.00.08)	

Pr.	Parameter Name	Setting Range	Default
		1: Password has been set	
00.10	Speed Control Mode	0: V/F control	0
00.10		1: SVC control	0
00.11	Reserved	None	None
00.12	50Hz Base Voltage Selection	0: 400V	1
00.12		1: 380V	I
00.12	User-defined Value (Maximum	0–9999	0
00.13	Output Frequency)		0
00.14	Decimal Place of User-defined	0.2	0
00.14	Value	0–3	0
		0–5: Reserved	Pood
00.15	Machine Type ID	6: Telescopic motor	rteau anhu
		7: Belt conveyor motor	only

01 Basic Parameters

	Pr.	Parameter Name	Setting Range	Default
	01.00	Maximum Output Frequency	50.00–400.00 Hz	50.00
	01.01	Motor Rated Frequency	0.10–400.00 Hz	50.00
	01.02	Motor Rated Voltage	460V models: 0.1–510.0 V	380.0
	01.03	Mid-point Frequency	0.10–400.00 Hz	1.50
	01.04	Mid-point Voltage	460V models: 0.1–510.0 V	20.0
	01.05	Minimum Output Frequency	0.10–400.00 Hz	1.50
	01.06	Minimum Output Voltage	460V models: 0.0–480.0 V	20.0
	01.07	Output Frequency Upper Limit	0.1–120.0%	110
	01.08	Output Frequency Lower Limit	0.0–100.0%	0
*	01.09	Acceleration Time 1	0.1–600.0 sec. / 0.01–600.00 sec.	3.0
~	01.10	Deceleration Time 1	0.1–600.0 sec. / 0.01–600.00 sec.	3.0 (VFD1) 0.2 (VFD2)
*	01.11	Acceleration Time 2	0.1–600.0 sec. / 0.01–600.00 sec.	3.0
~	01.12	Deceleration Time 2	0.1–600.0 sec. / 0.01–600.00 sec.	3.0 (VFD1)
~	01 13	IOG Acceleration Time		0.2 (VI D2)
~	01.10		0.1-600.0 sec / 0.01-600.00 sec	1.0
~	01 15		0.10-400.00 Hz	6
	01.16	Auto-acceleration and Auto-deceleration Setting	 0: Linear acceleration and linear deceleration 1: Auto-acceleration and linear deceleration 2: Linear acceleration and auto- deceleration 3: Auto-acceleration and auto- deceleration (set by load) 4: Auto-acceleration and auto- deceleration (set by Acceleration/ Deceleration Time setting) 	0
	01.17	S-curve for Acceleration Begin Time	0.0–10.0 sec. / 0.00–10.00 sec.	0
	01.18	S-curve for Acceleration Arrival Time	0.0–10.0 sec. / 0.00–10.00 sec.	0
	01 10	Acceleration and Deceleration Time Unit	0: Unit: 0.1 sec.	0
	01.19	Setting	1: Unit: 0.01 sec.	0
*	01.20	Simple Positioning Stop Frequency 0		0.00
*	01.21	Simple Positioning Stop Frequency 1		5.00
*	01.22	Simple Positioning Stop Frequency 2	0.00–400.00 Hz	10.00
*	01.23	Simple Positioning Stop Frequency 3		20.00
*	01.24	Simple Positioning Stop Frequency 4		30.00

Chapter 9 Summary of Parameter Settings | LTC

	Pr.	Parameter Name	Setting Range	Default
×	01.25	Simple Positioning Stop Frequency 5		40.00
×	01.26	Simple Positioning Stop Frequency 6		50.00
*	01.27	Simple Positioning Stop Frequency 7		60.00
*	01.28	Delay Time of Simple Positioning Stop 0		0.00
*	01.29	Delay Time of Simple Positioning Stop 1		0.00
*	01.30	Delay Time of Simple Positioning Stop 2		0.00
*	01.31	Delay Time of Simple Positioning Stop 3	0.00, 400,00,000	0.00
*	01.32	Delay Time of Simple Positioning Stop 4		0.00
*	01.33	Delay Time of Simple Positioning Stop 5		0.00
*	01.34	Delay Time of Simple Positioning Stop 6		0.00
*	01.35	Delay Time of Simple Positioning Stop 7		0.00
*	01.36	Energy Restriction Mode (Only for V/F Control Mode)	0: Disabled 1: OFD (Over Flux Deceleration) mode 2: TEC (Traction Energy Control) mode	0
×	01.37	TEC Current Restriction	Reserved	None
×	01.38	TEC Voltage Compensation Gain	0.01–655.35	0.5
×	01.39	TEC Voltage Compensation Filter	0.01–655.35 sec.	0.05
*	01.40	OFD Voltage Compensation Gain	0.01–655.35	0.05

02 Operation Method Parameters

	Pr.	Parameter Name	Setting Range	Default
~	02.00	First Master Frequency	3: RS-485 communication (RJ45 for VFD1 and VFD2)	1
~	02.00	Command Source	4: Digital keypad potentiometer	4
~	02.01	Operation Command Source	2: External terminals	2
	02.01	Operation Command Source	4: RS-485 communication (RJ45 for VFD1 and VFD2)	2
			0: STOP: ramp to stop; EF: coast to stop	
			1: STOP: coast to stop; EF: coast to stop	
	02.02	Motor Stop Method	2: STOP: ramp to stop; EF: ramp to stop	0
			3: STOP: coast to stop; EF: ramp to stop	
			4: Simple positioning stop; EF: coast to stop	
	02.03	PWM Carrier Frequency	2 12 447	8
	02.03	Selection		0
			0: Enable forward/reverse	
	02.04	Motor Direction Control	1: Disable reverse	0
			2: Disable forward	
		Drive's Operation Control	1: Does not run when power is ON, and remains	
		when Power is ON and RUN	current operation status when RUN command is	
	02.05	Command Source is	changed.	1
		Changed (External Terminals	3: Does not run when power is ON, and follows new	
		Only)	RUN command when RUN command is changed.	
	02.06	Reserved	None	None
	02.07	Reserved	None	None
	02.08	Reserved	None	None
~	02 09	Second Master Frequency	3: RS-485 communication	4
~	02.09	Command Source	4: Control by potentiometer on digital keypad	
			0: First master frequency command only	
		Combination of the First and	1: First master frequency command + second master	
~	02.10	Second Master Frequency	frequency command	0
		Commands	2: First master frequency command – second master	
			frequency command	
	02.11	Reserved	None	None
~	02.12	Communication Frequency	0.00–400.00 Hz	50.00
·			0: Saves the frequency before power is off	
	02.13	Frequency Command Saving	2: Only saves the communication frequency command	0
	-	Selection	before power is off	
			0: Use current Frequency command	
	02.14	Initial Frequency Command	1: Use zero Frequency command	0
		Mode at Stop	2: Refer to Pr.02.15 to set up	
	02.15	Initial Frequency Command	0.00–400.00 Hz	60.00
L				1

Pr.	Parameter Name	Setting Range	Default
	Setting at Stop		
		bit0=1: The Master Frequency Command Source is the	
		First Master Frequency Source (Pr.02.00).	
02.16	Master Frequency Command	bit1=1: The Master Frequency Command Source is the	Read
02.10	Source Display	Second Master Frequency Source (Pr.02.09).	only
		bit2=1: The Master Frequency Command Source is the	
		external multi-function input terminal	
		bit1=1: Operation Command source is the RS-485	
		communication	
02.17	Operation Command Source	bt2=1: Operation Command Source is the external	Read
02.17	Display	terminal (MI1)	only
		bit3=1: Operation Command Source is the external	
		multi-function input terminals	
02.18	User-defined Value 2 Setting	0–Pr.00.13	0
02.10	Llear defined Value 2	0.0000	Read
02.19	User-delined value 2	0-9999	only

03 Output Function Parameters

Pr.	Parameter Name	Setting Range	Default
03.00	Multi-function Output (MO1)	0: No function	8
03.01	Multi-function Output (MO2)	1: Indication during RUN	
		2: Indication of frequency reached	
		3: Zero speed	
		4: Over-torque detection	
		5: Base Block (B.B.) indication	
		6: Low-voltage detection	
		7: Drive operation mode	
		8: Fault indication	
		9: Desired frequency reached	
		10: Terminal count value reached	
		11: Preliminary count value reached	
		12: Over-voltage stall prevention	
		13: Over-current stall prevention	VED1:26
		14: IGBT overheating warning (ON: 110°C; OFF:	
		105°C)	VI D2. 0
		15: Over-voltage	
		16: Reserved	
		17: Forward running (FWD) command	
		18: Reverse running (REV) command	
		19: Zero speed (including STOP)	
		20: Warning indication	
		21: Mechanical brake control (used with Pr.03.11,	
		Pr.03.12)	
		22: Drive is ready	
		23–25: Reserved	
		26: Belt conveyor motor stall failure (activates when	
		belt conveyor motor stall occurs)	
03.02	Desired Frequency Reached	0.00–400.00 Hz	0.0
03.03	Reserved	None	None
03.04	Reserved	None	None
03.05	Terminal Count Value	0–9999	0
03.06	Preliminary Count Value	0–9999	0
03.07	EF Activates when the Terminal	0: Terminal count value reached, no EF displays	0
00.07	Count Value Reached	1: Terminal count value reached, EF is triggered	
		0: Fan is always ON	
03.08	Fan Cooling Control	1: Fan is OFF after the AC motor drive stops for one	0
		minute	

Chapter 9 Summary of Parameter Settings | LTC

Pr.	Parameter Name	Setting Range	Default
		2: Fan is ON when the AC motor drive runs; fan is	
		OFF when the AC motor drive stops	
		3: Fan is ON after detecting heat sink temperature is	
		reached (ON: 60°C; OFF: 40°C)	
		4: Fan is ON when the AC motor drive runs; fan is	
		OFF when the AC motor drive stops. Fan is	
		standby when at zero speed.	
03.09	Reserved	None	None
03.10	Reserved	None	None
02.11	Mechanical Brake Release	0.00–20.00 Hz	0
03.11	Frequency		0
02.40	Mechanical Brake Engage	0.00–20.00 Hz	
03.12	Frequency		0
02.42	Display the Status of Multi-	Cas nonemator descriptions halow	Read
03.13	function Output Terminal	See parameter descriptions below	only
03.14	Reserved	None	None

04 Input Function Parameters

	Pr.	Parameter Name	Setting Range	Default	
×	04.00	Keypad Potentiometer Bias	0.0–100.0%	0.0	
~	04 01	Keypad Potentiometer Bias	0: Positive bias	0	
~	Polarity 1: Negative bias 04.02 Keypad Potentiometer Gain 0.1–200.0%		1: Negative bias	0	
×	04.02	Keypad Potentiometer Gain	0.1–200.0%	100	
	04.03	Keypad Potentiometer	0: No pogotivo bios command		
		Negative Bias, Reverse Motion	1: Negative bias Command	0	
		Enable/Disable	T. Negative blas. REV motion enabled		
			Mode 1 (Pr.04.19=0)		
			0: MI1 start-up (FWD) / stop		
			1: Reserved		
	04.04	MI Terminal Control Mode	2: Reserved	0	
	04.04	Selection (MI1, MI2, MI3)	Mode 2 (Pr.04.19=1)	0	
			0: Two-wire operation control (1) MI1, MI2		
			1: Two-wire operation control (2) MI1, MI2		
			2: Three-wire operation control MI1, MI2, MI3		
	04.05	Reserved	0: No function	None	
	04.00	Multi-function Input Command	1: Reserved	4	
	04.00	1 (MI2)	2: Reserved	.1	
	04.07	Multi-function Input Command	3: Reserved		
		2 (MI3)	4: Reserved	14	
-			5: Fault reset		
			6: Acceleration / deceleration inhibit		
			7: 1 st and 2 nd acceleration / deceleration time selection		
			JOG command		
			B.B. inputs from external		
			10: Reserved		
			11: Reserved		
			12: Counter trigger		
		Multi function Innut Commond	13: Clear the counter		
	04.08		14: External fault input	5	
		3 (IVII4)	15: Reserved		
			16: Output stops		
			17: Parameter lock enabled		
			18: Operation command selection: external terminals		
			19: Reserved		
			20: Operation command selection: communication		
			21: Forward / reverse running command		
			22: Second master frequency command source		
			enabled		

	Pr.	. Parameter Name Setting Range		Default
			23: Simple positioning stop by forward limit	
			24: Simple positioning stop by reverse limit	
	04.09Multi-function Input Contact Selection (N.O./N.C.)004.10Digital Terminal Input Response Time1		0–15	0
			1–20 (*2 ms)	1
	04.11	Reserved	None	None
	04.12	Reserved	None	None
	04.13	Reserved	None	None
Ī	04.14	Reserved	None	None
Ī	04.15	Reserved	None	None
Ī	04.16	Reserved	None	None
ĺ	04.17	Reserved	None	None
ĺ	04.18	Reserved	None	None
Ī	04.40	MI Terminal Control Mode	0: Mode 1, single-wire start-up/stop	4
	04.19	Selection	1: Mode 2, two-wire/three-wire start-up/stop	1
ĺ	04.20	Reserved	None	None
Ī	04.21	Reserved	None	None
	04.22	Reserved	None	None
	04.23	Reserved	None	None
	04.24	Reserved	None	None
Ī	04.25	Reserved	None	None
	04.26	Display the Status of Multi- function Input Terminal	See parameter descriptions below	Read only
~	04.27	Internal/External Multi-function Input Terminals Selection	0–15	0
~	04.28	Internal Multi-function Input Terminal Status	0–15	0
	04.29	Reserved	None	None
	04.30	Reserved	None	None
	04.31	Reserved	None	None
	04.32	Reserved	None	None
	04.33	Reserved	None	None
ĺ	04.34	Reserved	None	None

05 Multi-step Speed Parameters

	Pr.	Parameter Name	Setting Range	Default
~	05.00	Reserved	None	None
~	05.01	Reserved	None	None
~	05.02	Reserved	None	None
~	05.03	Reserved	None	None
*	05.04	Reserved	None	None
~	05.05	Reserved	None	None
~	05.06	Reserved	None	None

Pr. Parameter Name Default Setting Range 0: Disabled 06.00 780.0 V Over-voltage Stall Prevention 660.0-820.0 V Over-current Stall Prevention 06.01 20-250% (0: Disabled) 170 N during Acceleration **Over-current Stall Prevention** 06.02 20-250% (0: Disabled) 170 during Operation 0: No detection 1: Drive continues operation until OL1 or OL protection is triggered after over-torque is detected during constant speed operation 2: Drive stops and OL2 fault is triggered after overtorque is detected during constant speed 06.03 **Over-torgue Detection Selection** operation 0 3: Drive continues operation until OL1 protection is triggered after over-torque is detected during acceleration and constant speed operation 4: Drive stops and OL2 fault is triggered after overtorque is detected during acceleration and constant speed operation 06.04 **Over-torque Detection Level** 10-200% 150 06.05 0.1 **Over-torque Detection Time** 0.1-60.0 sec. 0: Standard motor (motor with the fan on the shaft) **Electronic Thermal Overload** 06.06 1: Special motor (with external forced cooling) 2 Relay Selection (OL1) 2: Disabled Electronic Thermal Overload 06.07 30-600 sec. 60 **Relay Action Time** 06.08 Fault Record 1 (The Most Recent) 0: No fault record 0 Fault Record 2 06.09 1: Over-current (oc) 0 06.10 Fault Record 3 2: Over-voltage (ov) 0 3: IGBT overheating (oH1) 06.11 Fault Record 4 0 4: Reserved 5: Overload (oL) 6: Overload 1 (oL1) 7: Overload 2 (oL2) Fault Record 5 06.12 8: External Fault (EF) 0 9: Over-current during acceleration (ocA) 10: Over-current during deceleration (ocd) 11: Over-current during steady operation (ocn) 12: Reserved

06 Protection Function Parameters

	Pr.	Parameter Name	Setting Range	Default	
			13: Reserved		
			14: Phase loss protection (PHL)		
			15: Reserved		
			16: Auto-acceleration/deceleration failure (cFA)		
			17: Software protection enabled (codE)		
			18: EEPROM write error (cF1.0)		
			19: EEPROM read error (cF2.0)		
			20: Hardware protection fault 1 (HPF1)		
			21: Hardware protection fault 1 (HPF2)		
			22: Reserved		
			23: Hardware protection fault 1 (HPF4)		
			24: Drive wiring detection fault (cF3.0)		
			25: Drive wiring detection fault (cF3.1)		
			26: Drive wiring detection fault (cF3.2)		
			27: Drive wiring detection fault (cF3.3)		
			28: Drive wiring detection fault (cF3.4)		
			29: Reserved		
			30: Reserved		
			31: Reserved		
			32: Reserved		
			33: Reserved		
		34: Reserved			
	35: Reserved		35: Reserved		
			36: Reserved		
			37: Multi-motor fault protection (oPHL)		
			38: IGBT temperature PTC OFF (TH1o)		
			39: Reserved		
			40: Reserved		
			41: Belt conveyor drive (VFD1) stall failure (StAL)		
			42: Over-voltage at stop (ovS)		
			43: Over-voltage during acceleration (ovA)		
			44: Over-voltage during deceleration (ovd)		
_			45: Over-voltage during constant speed (ovn)		
~	06 13	Motor Phase Loss Detection Time	0: Disabled	0	
~	00.10		0–60 sec.	U	
~	06.14	Current Detection for Motor Phase Loss	10–100%	30	

07 Motor Parameters

	Pr.	Parameter Name	Setting Range	Default
*	07.00	Motor Rated Current	23% FLA–120% FLA	100
*	07.01	Motor No-load Current	0% FLA-99% FLA	40
*	07.02	Torque Compensation	0.0–10.0	0.0
*	07.03	Slip Compensation Gain	0.00–10.00	0.00
			0: Disabled	
×	07.04	Motor Parameter Auto-tuning	1: Auto-tuning R1 (motor does not run)	0
			2: Auto-tuning R1 + no-load current (motor runs)	
	07.05	Motor Line-to-line Resistance	0 65535 mO	0
	07.03	R1 (Motor 0)		0
	07.06	Motor Rated Slip (Motor 0)	0.00–20.00 Hz	3.00
	07.07	Slip Compensation Limit	0–250%	200
	07.08	Torque Compensation Low	0.01.10.00 sec	0.10
	07.00	Pass Filter Time		0.10
	07 09	Slip Compensation Low Pass		0.20
	07.00	Filter Time		0.20
	07 10	Accumulated Motor Operation	00–1439 min	0
	07.10	Time		0
	07 11	Accumulated Motor Operation	00-65535 days	0
	07.11	Time		0
	07.12	Reserved	None	None
	07.13	Reserved	None	None
	07.14	Reserved	None	None
	07.15	Reserved	None	None
	07.16	Reserved	None	None
	07.17	Reserved	None	None

08 Special Parameters

	Pr.	Pr. Parameter Name Setting Range		Default
	08.00	DC Brake Current Level	0–100%	0
	08.01	DC Brake Time At Start-up	0.0–60.0 sec.	0.0
	08.02	DC Brake Time At STOP	0.0–60.0 sec.	0.0
	08.03	DC Brake Frequency at STOP	0.00–400.00 Hz	0.00
	08.04	Restart after Momentary Power Loss	 0: Operation stops after momentary power loss 1: Operation continues after momentary power loss, speed tracking starts with the last frequency. 2: Operation continues after momentary power loss, speed tracking starts with the minimum frequency. 	0
	08.05	Maximum Allowable Power Loss Time	0.1–20.0 sec.	2.0
	08.06	Base Block Speed Tracking	 0: Disabled 1: Speed tracking starts with the last frequency 2: Speed tracking starts with the minimum output frequency (Pr.01.05) 	1
	08.07	Base Block Time for Speed Tracking	ed Tracking 0.1–5.0 sec.	
	08.08	Current Limit for Speed Tracking	30–200%	150
×	08.09	Skip Frequency 1 (Upper Limit)	0.00–400.0 Hz	0.00
×	08.10	Skip Frequency 1 (Lower Limit)	0.00–400.0 Hz	0.00
×	08.11	Skip Frequency 2 (Upper Limit)	0.00–400.0 Hz	0.00
×	08.12	Skip Frequency 2 (Lower Limit)	0.00–400.0 Hz	0.00
*	08.13	Skip Frequency 3 (Upper Limit)	0.00–400.0 Hz	0.00
*	08.14	Skip Frequency 3 (Lower Limit)	0.00–400.0 Hz	0.00
	08.15	Number of Times of Restart after Fault	0–10	0
	08.16	Auto-restart Interval of Fault	0.1–6000 sec.	60.0
	08.17	Automatic Energy-saving	 0: Automatic energy-saving operation is disabled 1: Automatic energy-saving operation is enabled 	0
	08.18	Automatic Voltage Regulation (AVR)	 0: AVR function is enabled 1: AVR function is disabled 2: AVR function is disabled during deceleration 3: AVR function is disabled at stop 	0
,	08.19	Reserved	None	None
*	08.20	Vibration Suppression	0.0–5.0	0

Chapter 9 Summary of Parameter Settings | LTC

Pr.	Parameter Name	Setting Range	Default
08.21	Reserved	None	None
08.22	Reserved	None	None
08.23	Reserved	None	None
08.24	Reserved	None	None
08.25	Reserved	None	None

09 Communication Parameters

	Pr.	Parameter Name	Setting Range	Default	
*	09.00	Communication Address	1–254	1	
			0: Baud rate 4800 bps		
×	09.01	Transmission Speed	1: Baud rate 9600 bps	2	
			2: Baud rate 19200 bps		
			0: Warn and continue operation		
~	00.02	Transmission Fault Traatmont	1: Fault and ramp to stop	3	
~	09.02		2: Fault and coast to stop		
			3: No warning, no fault and continue operation		
~	00.03	Communication Time-out	0.0: No function	0	
	09.00	Detection	0.1–120.0 sec.	U	
			0: 7, N, 2 for ASCII		
	09.04	9.04 Communication Protocol	1: 7, E, 1 for ASCII	3	
			2: 7, O, 1 for ASCII		
			3: 8, N, 2 for RTU		
			4: 8, E, 1 for RTU		
~			5: 8, O, 1 for RTU		
			6: 8, N, 1 for RTU		
			7: 8, E, 2 for RTU		
			8: 8, O, 2 for RTU		
			9: 7, N, 1 for ASCII		
			10: 7, E, 2 for ASCII		
			11: 7, O, 2 for ASCII		
	09.05	Reserved	None	None	
	09.06	Reserved	None	None	
~	09.07	Communication Response	0 0–200 0 ms (One unit: 2 ms)	1	
<i>,</i> .	00.07	Delay Time		I	
	09.08 Reserved None		None	None	

10 Speed Feedback Control Parameters

Pr.	Parameter Name	Setting Range	Default
10.00–10.50	Reserved	None	None

[This page intentionally left blank]

Chapter 10 Descriptions of Parameter Settings

00 User Parameters

✓ You can set this parameter during operation.

00.00	AC Mot	or Drive Identity Code	
			Default: Read only
	Settings	Read only	

00.01 AC Motor Drive Rated Current Display

Default: Read only

Default: 0

Settings Read only

- Pr.00.00 displays the AC motor drive identity code. Use the following specification table to check if Pr.00.01 setting is the rated current of the AC motor drive. Pr.00.01 corresponds to the identity code of Pr.00.00.
- Pr.00.01 indicates the rated output current of the AC motor drive. Use this parameter to check if the displayed values matches the drive used.

Frame	A				
Models	VFD2207LTC43A		VFD4015LTC43A		
Description	Telescopic	Belt conveyor	Telescopic	Belt conveyor	
Power (kW)	0.75	2.2	1.5	4.0	
Power (HP)	1	3	2	5.5	
Identity Code	5	9	7	11	
Rated Current (A)	2.5	5.5	4.2	9.0	

Specification table of drive capacity, identity code, and rated current:

00.02 Parameter Reset

Settings 0: Can be read/written

1: Read only

- 8: Keypad locked
- 7: Reset CANopen Slave index
- 9: Reset all parameter settings to defaults (50 Hz)

10: Reset all parameter settings to defaults (60 Hz)

- 9 or 10: Resets all parameters to defaults when parameters are abnormal due to fault or incorrect tuning.
- \square 9: The base voltage of 50 Hz power system varies with Pr.00.12 settings.
- □ 1: All parameters cannot be changed and Err will be displayed if any values are entered. To write any parameters, set Pr.00.02= 0.
- When Pr.00.02=8, keypad is locked and can be unlocked by pressing ENTER key continuously for five seconds.

Start-up Display

00.03

Default: 0

- Settings 0: F (frequency command)
 - 1: H (output frequency)
 - 2: A (output current)
 - 3: U (user-defined) see Pr.00.04
- Determines the start-up display page after power is applied to the drive. The user-defined contents display according to the Pr.00.04 settings.
- When power is applied, the drive starts self-detecting and Pon is displayed. After flashing about five seconds, the default start-up display shows.

00.04 Content of Multi-function Display (User-Defined)

		Default: 3
Settings	0: Display user-defined (U)	82.8
	1: Display external terminal counter value (c)	c 20
	2: Display the status of multi-function input terminal (d)	8 15
	3: Displays DC bus voltage (u) (Unit: V_{DC})	J3 18
	4: Display output voltage (E) (Unit: V _{AC})	8223
	6: Display power factor angle (n)	~9 <u>0</u> 0
	7: Display power (P) (Unit: kW)	P0.00
	11: Display IGBT temperature (h) (Unit: °C)	h300

 \square Used to select the display contents as required only when Pr.00.03=3.

00.05 User-Defined Coefficient K

Unit: 0.1 Default: 1.00

Settings 0.00-160.00

Determines the multiplying factor (K) for the user-defined unit. The display value is calculated as follows: User-defined unit (U) = Output frequency (H) × User-defined Coefficient (K) (Pr.00.05)

00.06	Software Version	
		Default: Read only
	Settings Read only	
00.07	Reserved	

00.08 Parameter Protection Password Input

Default: 0

Settings 0-9999

- Displayed value 0–2 is the number of wrong password attempts.
- Enter the password that is set in Pr.00.09. Enter the correct password here to enable changing parameter settings. You are limited to a maximum of three attempts. After three consecutive failed attempts, a blinking "codE" appears. You must restart the AC motor drive before you can try again to enter the correct password. To avoid problems in the future, be sure to write down the password after you set this parameter. If you forget the password, return the unit to Delta to unlock the password.

00.09 Parameter Protection Password Setting

Default: 0

Settings 0–9999

- 0: No password protection or password is entered correctly (Pr.00.08). 1: Password has been set.
- This parameter is for setting the password protection. Password can be set directly the first time. After you set the password, the value of Pr.00.09 is 1, which means password protection is activated. However, if the value of Pr.00.09 is 0, the password protection is deactivated, which means you can change any of the parameter settings (including resetting the parameter protection password for Pr.00.09). When Pr.00.09 is 1 and if you want to change any of the parameter settings, you must enter the correct password in Pr.00.08 to deactivate the password, and this would make Pr.00.09 become 0.

NOTE:

If you set this parameter to 0 again, the password protection function is deactivated. No password protection is enabled for future rebooting. Otherwise, as long as you set a password other than 0, this password protection is always reactivated after you reboot the motor drive. If you want to change any of the parameter settings after rebooting the motor drive, enter the correct password in Pr.00.08 to deactivate the password.

- This parameter is used to prevent personnel from setting other parameters by accident. Method 1: Enter the original password into Pr.00.09 again (or you can enter a new password if you want; be sure to record it).
 - Method 2: Reboot the drive to restore the password protection function.
 - Method 3: Enter any value that is not the password into Pr.00.08. (Pr.00.08 displays End regardless of whether the password is entered correctly.)

Password Decode Flow Chart

00.10 Speed Control Mode

Settings 0: V/F control 1: SVC control

- Determines the control mode of the AC motor drive.
- U/F Control: (Voltage/Frequency Control)

The V/F control is a constant value control mode. In this control mode, frequency decreasing and magnetic field increasing are under control. But as the frequency decreases, a problem rises: the insufficiency of motor's torque in a weaken low frequency magnetic field. To solve this problem, set Pr.07.02 Torque Compensation to compensate torque then to have the best operating performance.

Default: 0

- Common applications are water pumps, conveyors, compressors and treadmills.
- Q Vector Control:

The vector control mode can eliminate the relationship between the field current vector and the armature flux, and auto-tune the torque compensation and slip compensation to increase the dynamic response of the motor drive.

- Common applications are textile equipment, printing equipment, crane equipment and drilling machinery.
- Related parameter: Pr.07.02 Torque Compensation

Reserved 00.11

50Hz Base Voltage Selection 00.12

Settings 0: 400V

1:380V

Determines the base voltage when the drive resets to 50 Hz.

User-defined Value 00.13

Settings 0-9999

- Corresponds to Maximum Output Frequency (Pr.01.00).
- When Pr.00.13 is not set to 0, "F" automatically disappears in frequency mode and the rightmost digit blinks. The ranges for many functions display according to Pr.00.13, including the UP/DOWN key on the keypad, multi-step speed function, and JOG function.
- When Pr.00.13 is not set to 0, and the frequency source is from communications, use Pr.02.18 to change the frequency command instead of using communication address 2001H.

Decimal Place of User-defined Value 00.14

Settings 0-3

Sets the place of decimal point for Pr.00.13. Example: If you want to set the user-defined value to 10.0, set Pr.00.13 to 100 and Pr.00.14 to 1.

Machine Type ID 00.15

Settings 0-5: Reserved

6: Telescopic motor

7: Belt conveyor motor

Default: 0

Default: Read only

Default: 1

Default: 0

[This page intentionally left blank]

Chapter 10 Descriptions of Parameter Settings | LTC

01 Basic Parameters

✓ You can set this parameter during operation. Maximum Output Frequency 01.00 Default: 50.00 Settings 50.00-400.00 Hz 01.01 Motor Rated Frequency Default: 50.00 Settings 0.10-400.00 Hz Description Set this value according to the rated motor frequency as indicated on the motor nameplate. 01.02 Motor Rated Voltage Default: 380.0 Settings 460V models: 0.1-510.0 V For 460V models, the default is 380.0 V. Set the maximum output voltage. The setting must be smaller than or equal to the rated motor voltage as indicated on the motor nameplate. 01.03 Mid-point Frequency Default: 1.50 Settings 0.10-400.00 Hz Sets the mid-point frequency of any V/F curve. This setting determines the V/F ratio between the Minimum Frequency and the Mid-point Frequency. 01.04 Mid-point Voltage Default: 20.0 Settings 460V models: 0.1–510.0 V For 460V models, the default is 20.0 V. Sets the mid-point voltage of any V/F curve. This setting determines the V/F ratio between the Minimum Frequency and the Mid-point Frequency. Minimum Output Frequency 01.05 Default: 1.50 Settings 0.10-400.00 Hz Sets the minimum output frequency of the AC motor drive in V/F curve. 01.06 Minimum Output Voltage Default: 20.0 Settings 460V models: 0.0–480.0 V

Given For 460V models, the default is 20.0 V.

Sets the minimum output voltage of the AC motor drive in V/F curve.

The settings for Pr.01.01–Pr.01.06 must meet the condition of Pr.01.02 \geq Pr.01.04 \geq Pr.01.06; Pr.01.01 \geq Pr.01.03 \geq Pr.01.05.

01.07 Output Frequency Upper Limit

Default: 110

- This parameter must be equal to or greater than the Output Frequency Lower Limit (Pr.01.08).
 - The Maximum Output Frequency (Pr.01.00) is equal to 100%.
- The Output Frequency Upper Limit value = (Pr.01.00 x Pr.01.07) /100

01.08 Output Frequency Lower Limit

Default: 0

Settings 0.0-100%

- The Output Frequency Lower Limit value = (Pr.01.00 × Pr.01.08) / 100
- Use the output frequency upper and lower limit settings to prevent operator misuse, overheating caused by the motor's operating at a too low frequency, or mechanical wear due to a too high speed.
- If the output frequency upper limit calculated is 50 Hz and the frequency setting is 60 Hz, the maximum output frequency is 50 Hz.
- If the output frequency lower limit calculated is 10 Hz and the minimum output frequency setting (Pr.01.05) is 1.5 Hz, then the drive operates at 10 Hz when the Frequency command is higher than Pr.01.05 but lower than 10 Hz. If the Frequency command is lower than the minimum output frequency (Pr.01.05), the drive is in ready status without output.

01.09 Acceleration Time 1

Default: 3.0

Settings 0.1–600.0 sec. / 0.01–600.00 sec.

You can switch the acceleration/deceleration time 1 or 2 by setting the external terminals MI2– MI4 to 7.

×	01.10 Deceleration Time 1				
				Default:	
				3.0 (VFD1) / 0.2 (VFD2)	
		Settings	0.1-600.0 sec. / 0.01-600.00 sec.		
	🚇 You car	switch the	e acceleration/deceleration time 1 or 2 by setti	ng the external terminals MI2-	
	MI4 to 7	7.			
N	01.11	Accelera	ation Time 2		
				Default: 3.0	
		Settinas	0.1–600.0 sec. / 0.01–600.00 sec.		
	🚇 You car	switch the	e acceleration/deceleration time 1 or 2 by setti	ng the external terminals MI2–	
	MI4 to 7	7.		· · · · · · · · · · · · · · · · · · ·	
×	01.12	Deceleration	ation Time 2		
				Default:	
				3.0 (VFD1) / 0.2 (VFD2)	
		Settings	0.1–600.0 sec. / 0.01–600.00 sec.		
	Q You can switch the acceleration/deceleration time 1 or 2 by setting the external terminals MI2–				
	MI4 to 7	7.			
N	01 13		celeration Time		
		000710		Default: 1.0	
		Settinas	0 1–600 0 sec / 0 01–600 00 sec		
N	01 14	JOG De			
,				Default: 1.0	
		Settings	0 1–600 0 sec / 0 01–600 00 sec		
N	01 15				
,.			Squonoy	Default: 6.00	
		Settings	0 10_400 00 Hz		
		Jeunys	$\frac{1}{10} = \frac{1}{10} $	lhan the IOC command is ON	
	Be only external terminal setting MIZ, MIS of MI4 to 8 (JOG). When the JOG command IS ON,				

Chapter 10 Descriptions of Parameter Settings | LTC

- the AC motor drive accelerates from the Minimum Output Frequency (Pr.01.05) to the Jog Frequency (Pr.01.15). When the JOG command is OFF, the AC motor drive decelerates from the JOG frequency to stop. The acceleration/deceleration time is set by the JOG Acceleration/Deceleration Time (Pr.01.13, Pr.01.14).
- The drive must be stopped before using the JOG command. During Jog operation, other operation commands are not accepted, except FORWARD/REVERSE commands.

The Definition of JOG Accel./Decel. Time

01.16 Auto-acceleration and Auto-deceleration Setting

Default: 0

Settings 0: Linear acceleration and linear deceleration

1: Auto-acceleration and linear deceleration

- 2: Linear acceleration and auto-deceleration
- 3: Auto-acceleration and auto-deceleration (set by load)

Auto-acceleration and auto-deceleration (set by Acceleration/Deceleration Time setting)

- With auto-acceleration and auto-deceleration, it is possible to reduce vibration and shocks during starting and stopping the load. During auto-acceleration, the torque is automatically measured and the drive accelerates to the set frequency with the shortest acceleration time and the smoothest starting current. During deceleration, the drive automatically determines the loaded regenerative energy to steadily and smoothly stop the motor in the shortest deceleration time. When this parameter is set to 4, the actual acceleration/deceleration time refers to acceleration time settings in Pr.01.09–Pr.01.12. Thus the actual acceleration time settings.
- Auto-acceleration and auto-deceleration makes the complicated processes of tuning unnecessary. It does not stall during acceleration and does not need a brake resistor during deceleration to stop. It can also improve operation efficiency and save energy.

- adjusts the acceleration and deceleration S-curve. When enabled, the drive produces a different acceleration and deceleration curve according to the acceleration and deceleration time. When setting this parameter to 0.0, it is linear acceleration and linear deceleration.
- The following diagram shows that the original setting of the Acceleration and Deceleration Time is only for reference when you enable the S-curve. The actual acceleration and deceleration time depends on the selected S-curve (0.1 to 10.0). Pr.01.17 must be smaller than Pr.01.09 or Pr.01.11; Pr.01.18 must be smaller than Pr.01.10 or Pr.01.12. Otherwise, the S-curve is invalid.
- □ The total acceleration time = Pr.01.09 + Pr.01.17 or Pr.01.11 + Pr.01.17
- □ The total deceleration time = Pr.01.10 + Pr.01.18 or Pr.01.12 + Pr.01.18

Acceleration/deceleration Characteristics

01.19 Acceleration and Deceleration Time Unit Setting

Default: 0

Settings 0: Unit: 0.1 sec.

1: Unit: 0.01 sec.

- The acceleration time determines the time required for the AC motor drive to ramp from 0.00 Hz to the Maximum Output Frequency (Pr.01.00). The deceleration time determines the time required for the AC motor drive to decelerate from the Maximum Output Frequency down to 0 Hz.
- Select the Acceleration / Deceleration Time 1, 2 with the multi-function input terminal settings. The defaults are Acceleration Time 1 and Deceleration Time 1.
- Pr.01.19 settings change the settings of acceleration and deceleration time unit, further changing the setting range of acceleration and deceleration time.

Default: 0.00

Settings 0.00-400.00 sec.

Description: This is valid only when Pr.02.02 motor stop method is set to 4: simple positioning stop.

- The settings 0–7 for Pr.01.20–Pr.01.27 must work with the settings 0–7 for Pr.01.28–Pr.01.35 and correspond to each other. For example, Pr.01.20 must work with Pr.01.28.
- □ The function of Pr.01.28–Pr.01.35 is simple positioning. Speed starts to decelerate after the time set at Pr.01.28–Pr.01.35 elapses. The accuracy of positioning is self-assessed by user.

$$\mathbf{S} = \mathbf{n} \times \left(\frac{t_x + (t_x + t_2)}{2}\right)$$

 $n = f \times \frac{120}{p}$

S: operation distance (revolution) n: rotation speed (revolution/second)

^t_x: delay time (second)

 t_2 : deceleration time (second)

n: rotation speed (RPM) (revolution/minute) P: number of poles in the motor

f: operation frequency

The value of t_x in the equation above describes as below.

1.1 When the slope is negative (t1 > t2)

As shown in the figure below, assume that the radius of the four-pole motor is r and rotation speed is n (RPM).

Example 1:

When the motor swivel table rotates at 50 Hz, and Pr.02.02 = 4 [Simple Positioning Stop; E.F.: coast to stop], and Pr.01.26 = 50 Hz [Simple Positioning Stop Frequency 6], and its corresponding Pr.01.34 = 2 sec. [Delay Time of Simple Positioning Stop 6], then the deceleration time from 50 Hz to 0 Hz is 10 seconds.

After executing the stop command, Simple Positioning Stop activates, its rotation speed is n = 120 x 50 / 4 (revolution / minute) = 25 (revolution / second)

The number of revolution of the swivel table = $(25 \times (2 + 12))/2 = 175$ (revolutions)

Therefore, the motor's operation distance after executing the stop command = number of revolutions x circumference = $175 \times 2 \pi r$. It also means that the swivel table goes back to the top after 175 revolutions.

Example 2:

Assume that the motor swivel table rotates at 1.5 Hz, and Pr.01.22 = 10 Hz [Simple Positioning Stop Frequency 2], and Pr.01.30 = 10 sec. [Delay Time of Simple Positioning Stop 2], then the deceleration time from 60 Hz to 0 Hz is 40 seconds. The delay time at stop for 1.5 Hz is 1.5 second; the deceleration time from 1.5 Hz to 0 Hz is 1 second.

After executing the stop command, Simple Positioning Stop activates, its rotation speed is $n = 120 \times 1.5 / 4$ (revolution / minute) = 1.5 / 2 (revolution / second)

The number of revolution of the swivel table = $(1.5 / 2 \times (1.5 + 2.5)) / 2 = 1.5$ (revolutions)

Therefore, the motor's operation distance after executing the stop command = number of revolutions x circumference = $1.5 \times 2 \pi r$. It also means the swivel table stops after running 1.5 revolutions (red point is at the bottom).

01.36 Energy Restriction Mode (Only for V/F Control Mode)	
---	--

Default: 0

Settings 0: Disabled

- 1: OFD (Over Flux Deceleration) mode
- 2: TEC (Traction Energy Control) mode
- III 0: Decelerates or stops according to original deceleration time settings.
- 1: Acceleration, constant speed, and deceleration adjust automatically. Increase output frequency to reduce DC bus. After DC bus is reduced, output frequency is back to setting values.
- 2: Slope of acceleration, constant speed, and deceleration are fixed.

[This page intentionally left blank]

02 Operation Method Parameters

✓ You can set this parameter during operation.

- Sets the Master Frequency Command Source for the AC motor drive.
- Pr.02.09 is only valid when you set one of Pr.04.06 or Pr.04.08 = 22. When setting 22 is activated, the frequency command source is the setting for Pr.02.09. You can only enable only one of the first master frequency command and second master frequency command sources at one time.

02.02 Motor Stop Method

Default: 0

- Settings 0: STOP: ramp to stop; EF: coast to stop
 - 1: STOP: coast to stop; EF: coast to stop
 - 2: STOP: ramp to stop; EF: ramp to stop
 - 3: STOP: coast to stop; EF: ramp to stop
 - 4: Simple positioning stop; EF: coast to stop
- Determines how the motor is stopped when the drive receives the Stop command.
- Ramp to stop: According to the set deceleration time, the AC motor drive decelerates to the Minimum Output Frequency (Pr.01.05), and then stops.
- Coast to stop: According to the load inertia, the AC motor drive stops output immediately, and the motor coasts to stop.
- The motor stop method is usually determined by the characteristics of the motor load and how frequently it is stopped.
- (1) Use "ramp to stop" for the safety of personnel or to prevent material from being wasted in applications where the motor must stop immediately after the drive stops. You must set the deceleration time accordingly.
- (2) If idling is allowed or the load inertia is large, use "coast to stop".
- Description: Example uses are blowers, punching machines, centrifuges and pumps.

Chapter 10 Descriptions of Parameter Settings | LTC

Ramp to stop and Coast to stop

Settings 2–12 kHz

Determines the PWM carrier frequency for the AC motor drive.

Carrier Frequency	Acoustic Noise	Electromagnetic Noise or Leakage Current	Heat Dissipation	Current Wave
2 kHz	Significant 🔺	Minimal 🔺	Minimal 🔺	
8 kHz				
12 kHz	Minimal 🔻	Significant 🔻	Significant 🔻	

8 (≤ 5.5 HP) / 4 (7.5 HP)

From the table, you see that the PWM carrier frequency has significant influences on the electromagnetic noise, the AC motor drive heat dissipation, and the motor acoustic noise. Therefore, if the surrounding noise is greater than the motor noise, lower the carrier frequency to reduce the temperature rise. Although the motor has quiet operation in the higher carrier frequency, consider the entire wiring and interference.

02.04 Motor Direction Control

Default: 0

Settings 0: Enable forward/reverse 1: Disable reverse 2: Disable forward

Derivents damage caused by misoperation of the motor FWD/REV directions.

12 05	Drive's Operation Control when Power is ON and RUN Command Source
JZ.U5	is Changed (External Terminals Only)

Default: 1

Settings 1: Does not run when power is ON, and remains current operation status when RUN command is changed.

3: Does not run when power is ON, and follows new RUN command when RUN command is changed.

As the table below shows, this parameter sets the drive operation status when power is ON or RUN command source (from external terminals only) is changed.

02.05 Settings	Power is ON	RUN Command Source is Changed
1	Drive does not run	Remains current operation status
3	Drive does not run	Operation status varies with the changed RUN command

This parameter sets whether the drive receives the RUN command when RUN command source is from external terminals, RUN command remains and drive power is ON. If Pr.02.05=1, the drive does not receive the RUN command. To make the motor run, disable the RUN command first, and enable it again.

Power is ON:

When the RUN command source is from external terminals and RUN command is ON (MI1-DCM=closed), the drive runs according to Pr.02.05 settings after power is applied.

(1) If Pr.02.05=1 or 3, the drive does not run. Disable the RUN command first, and then enable it again to make the drive run.

Chapter 10 Descriptions of Parameter Settings | LTC

RUN Command Source is Changed:

Regardless of whether the drive is in operation or at stop, when new RUN command source is from external terminal, and its terminal status (ON: RUN; OFF: STOP) is different from the current status of the drive, the drive's running status is determined by Pr.02.05 settings:

- (1) If Pr.02.05=1, the drive's running status does not vary with external terminal status.
- (2) If Pr.02.05=3, the drive runs or stops immediately in accordance with external terminal status.

When Pr.02.05=1 or 3, it does not guarantee that the drive will never run under this condition. It is possible the drive may be set in motion by a mechanical vibration or malfunctioning switch. Pay extra attention when using this function.

	02.06	Reserve	ed	
	02.07	Reserved		
	02.08	Reserved		
×	02.09	Second Master Frequency Command Source		
_			Default: 3	
		Settings	3: RS-485 communication	
			4: Control by potentiometer on digital keypad	

```
    O2.10 Combination of the First and Second Master Frequency Commands
    Default: 0
```

Settings 0: First master frequency command only

- 1: First master frequency command + second master frequency command
- 2: First master frequency command second master frequency command

02.11 Reserved

02.12 Communication Frequency Command

Default: 50.00

Settings 0.00–400.00 Hz

Sets the frequency command or reads the communication frequency command.

02.13 Frequency Command Saving Selection

Default: 0

Settings 0: Saves the frequency before power is off

2: Only saves the communication frequency command before power is off

Determines whether to save the frequency set by users before power is off.

02.14 Initial Frequency Command Mode at Stop

Default: 0

Settings 0: Use current Frequency command

1: Use zero Frequency command

2: Refer to Pr.02.15 to set up

Determines whether to save the frequency set by users before power is off.

02.15 Initial Frequency Command Setting at Stop

Default: 60.00

Settings 0.00-400.00 Hz

Pr.02.14 and Pr.02.15 are used to determine the initial frequency command at stop.

- Pr.02.14=0: The initial frequency at stop is the current frequency.
- \square Pr.02.14=1: The initial frequency at stop is 0.
- Pr.02.14=2: The initial frequency at stop is the Pr.02.05 setting.

02.16 Master Frequency Command Source Display

Default: Read only Settings bit0=1: The Master Frequency Command Source is the First Master Frequency Source (Pr.02.00). bt1=1: The Master Frequency Command Source is the Second Master Frequency Source (Pr.02.09).

> bt2=1: The Master Frequency Command Source is the external multifunction input terminal

Master frequency command source can only be read from this parameter.

02.17 Operation Command Source Display

Default: Read only

Settings bt1=1: Operation Command source is the RS-485 communication

bt2=1: Operation Command Source is the external terminal (MI1)

bt3=1: Operation Command Source is the external multi-function input terminals

Departion command source can only be read from this parameter.

02.18 User-defined Value 2 Setting

Default: 0

Settings 0–Pr.00.13

When Pr.00.13 is not set to 0 and frequency source is from communication, Pr.02.18 will be used to read/write to change the operation frequency.

Settings 0-9999

Default: Read only

03 Output Function Parameters

03.00 Multi-function Output (MO1)

03.01 Multi-function Output (MO2)

✓ You can set this parameter during operation.

Default: 8
Default:
VFD1: 26
VFD2: 6

Summary of Function Settings

Settings	Functions	Descriptions
0	No function	Output terminal with no function
4		Activates when the drive outputs voltage or RUN
I	Indication during RUN	command is given.
2	Indication of frequency	Activates when output frequency of the drive reaches to
2	reached	the setting frequency.
2	Zero speed	Activates when output frequency of the drive is lower than
5		the minimum output frequency.
		Activates when the drive detects over-torque. Pr.06.04 sets
4	Over-torque detection	the over-torque detection level, and Pr.06.05 sets the over-
		torque detection time.
5	Base Block (B.B.) indication	Activates when external interruption (B.B.) occurs in the
5		drive and stops outputting.
6	Low-voltage detection	Activates when the drive detects input voltage is too low.
7	Drive operation mode	Activates when the drive RUN command is controlled by
		external terminals.
	Fault indication	Activates when the drive detects fault occurs. (oc, ov, ovA,
8		ovd, ovn, oH1, oL, oL1, EF, cF3.0–5, HPF1,2,4, ocA, ocd,
		ocn).
9	Desired frequency reached	Activates when the desired frequency (Pr.03.02) is
		reached.
10	Terminal count value reached	Activates if the count value is equal to the setting value for
		Pr.03.05 when the drive executes external counter.
	Preliminary count value	When the drive executes external counter, this contact
11	reached	activates if the count value is equal to the setting value for
		Pr.03.06.
12	Over-voltage stall prevention	Activates when over-voltage stall prevention is detected.
13	Over-current stall prevention	Activates when the over-current stall prevention is
10		detected.
	IGBT overheating warning	Activates when IGBT overheats to prevent the drive from
14	$(ON: 110^{\circ}C: OFE: 105^{\circ}C)$	shutting down due to overheating. ON: >110°C; OFF:
		<105°C.

Settings	Functions	Descriptions
15	Over-voltage	Activates when DC bus over-voltage is detected.
16	Reserved	None
17	Forward running (FWD)	Activates when the drive running direction is forward
	command	(FWD).
10	Reverse running (REV)	Activates when the drive running direction is reverse
10	command	(REV).
19	Zero speed (including STOP)	Activates when the drive is in standby or stop.
20	Morning indiaction	Activates when the drive detects warning occurs (CExx,
20		AUE, FbE, SAvE).
		Activates when output frequency \geq Pr.03.11 setting value.
21	Mechanical brake control	Deactivates when output frequency ≤ Pr.0312 setting value
		after STOP command.
22	Drive is ready	Activates when the drive is ready.
23	Reserved	None
24	Reserved	None
25	Reserved	None
00	Belt conveyor motor stall	
20	failure	Activates when beit conveyor motor stall occurs.

03.02 Desired Frequency Reached

Default: 0.0

Settings 0.00–400.00 Hz

Once the output frequency reaches the desired frequency, if the corresponding multi-function output terminal is set to 9 (Pr.03.00 and Pr.03.01), this multi-function output terminal is "closed".

Timing diagram of multi-function terminals and frequency reached

Default: 0

03.03	Reserved
03.04	Reserved
03.05	Terminal Count Value
	Default: 0

Settings 0–9999

Sets the count value of the LTC internal counter, which can be triggered by using the external multi-function input terminals on the control circuit. When the count reaches the setting value, the specified output terminal activates by setting one of the multi-function input terminals (the count value resets after reaching the setting for Pr.03.05).

03.06 Preliminary Count Value

Settings 0-9999

When the count value counts from c1 to reach this value, the corresponding multi-function output terminal is activated (MO#11: Preliminary count value reached). You can use this parameter as the end of counting to make the drive run from the low speed to stop.

Defining diagram shows as follows.

03.07 EF Activates when the Terminal Count Value Reached

Default: 0

Settings 0: Terminal count value reached, no EF displays

1: Terminal count value reached, EF is triggered

When Pr.03.07=1, the drive stops and EF is triggered when the count value is reached until EF is reset.

03.08 Fan (Cooling Control		
	Default: 0		
Settin	ıs 0: Fan is always ON		
	1: Fan is OFF after the AC motor drive stops for one minute		
	2: Fan is ON when the AC motor drive runs; fan is OFF when the AC mo	tor	
	drive stops		
	3: Fan is ON after detecting heat sink temperature is reached (ON: 60°C OFF: 40°C)	,	
	4: Fan is ON when the AC motor drive runs; fan is OFF when the AC mo	tor	
	drive stops. Fan is standby when at zero speed.		
Use this param	eter to control the fan.		
Because fan is	controlled by both belt conveyor motor and telescopic motor, fan will be ON w	/hen	
either fan of dri	res is ON, but can only be OFF when both fans of drives are OFF.		
03.09 Rese	rved		
03.10 Rese	rved		
03.11 Mechanical Brake Release Frequency			
	Default: 0.00		
Settin	is 0.00–20.00 Hz		
03.12 Mech	anical Brake Engage Frequency		
	Default: 0.00		
Settin	is 0.00–20.00 Hz		
These two para	meters set control of the mechanical brake through the output terminals (Rela	ay)	
by setting Pr.03	.00 to 21.		
	FrequencyExample 1: $Pr.03.12 \ge Pr.03.11$ OutputExample 2: $Pr.03.12 \le Pr.03.11$		
Exam	ble 1:		
	Pr.03.12		
Exam	Pr.03.11		
EXam	Pr.03.12		
	Time		

 Run/Stop

 Example 1:

 Pr.03.00=21

 Example 2:

 Pr.03.00=21

Pr.03.00 multi-function output terminal 21 (Mechanical Brake Control): When the output frequency reaches Pr.03.11 (Mechanical Brake Release Frequency), the multi-function output terminal is closed (ON). When the output frequency reaches Pr.03.12 (Mechanical Brake Engage Frequency), the multi-function output terminal is open (OFF).

03.13 Display the Status of Multi-function Output Terminal

Default: Read only

Settings Read only

The multi-function output terminals are falling-edge triggered. Thus if terminals are not activated, Pr.03.13 displays 3.

03.14 Reserved

[This page intentionally left blank]

- Use Pr.04.00–Pr.04.03 for applications that use the potentiometer signal on the digital keypad to adjust the setting frequency. The potentiometer is not an external device, but you need to use it when setting parameters. Refer to the following examples to know how to use it.
- As shown in the left figure below, operating the potentiometer on the digital keypad to the leftmost means the minimum value that the lowest voltage 0 V_{DC} corresponds to. As shown in the right figure below, operating the potentiometer on the digital keypad to the rightmost means the maximum value that the highest voltage 5 V_{DC} corresponds to.

The minimum

The maximum

Example 1:

04 Input Function Parameters

You set Pr.02.00 to 4 (the master frequency command comes from keypad potentiometer), set Pr.04.00–Pr.04.03 to defaults, and then you can set the main frequency command through the keypad potentiometer.

Example 2:

If you want the corresponded minimum value to be 12 Hz (the master frequency setting) when operating the keypad potentiometer to the leftmost, and then you can set other frequency settings as required. As can be seen from the diagram below, the correspondence between the keypad potentiometer (voltage) and setting frequency has been changed from 0-5 V (min.– max.) / 0-60 Hz to 0-4 V / 0-60 Hz. Therefore, the 4 V and above from the keypad potentiometer all correspond to 60 Hz. To use the full potentiometer range, refer to Example 3.

As shown in this example, the keypad potentiometer can be used for all ranges of 0-5 V / 0-60 Hz settings. This increases flexibility.

Example 4:

This example shows how to use the first half range 0-2.5 V (min. $-1/2 \times max$.) from the keypad potentiometer to set 0-60 Hz frequency settings. You can achieve the same results by either adjusting Pr.04.02 gain or setting Pr.01.00 to 120 Hz.

Example 5:

This example is a typical negative bias application. Using negative bias to set the frequency greatly reduces the noise interference. In a noisy environment, do NOT use signals less than 1 V to set the drive's operation frequency.

Example 6:

This example uses a negative bias to provide a noise margin. In additional, it uses a potentiometer frequency gain to reach the Maximum Output Frequency. This applies to a wide range of applications, and increases flexibility.

Example 7:

This example uses potentiometer applications in all aspects, and its applications in forward and reverse control make it easy to combine with system for complex applications. Note that using the settings in this example disables the external FWD and REV controls.

Example 8:

This example uses negative slope.

With these settings, the AC motor drive always runs in only one direction (reverse).

04.04 MI Terminal Control Mode Selection (MI1, MI2, MI3)

Default: 0

Settings Mode 1 (Pr.04.19=0)

- 0: MI1 start-up (FWD) / stop
- 1: Reserved
- 2: Reserved
- Mode 2 (Pr.04.19=1)
- 0: Two-wire operation control (1) MI1, MI2
- 1: Two-wire operation control (2) MI1, MI2
- 2: Three-wire operation control MI1, MI2, MI3
- NOTE: MI in the two VFDs of LTC has been pre-defined as two-wire operation control (1) in mode 2, so do NOT change the setting values in Pr.04.04 and Pr.04.19.
- Settings and functions of Pr.04.04 depend on Pr.04.19 settings.
- When Pr.04-19=0 in mode 1, MI1 is used to control start-up and stop, and MI2 to MI4 are used to set multi-function terminals.
- When Pr.04.19=1 in mode 2, MI1 and MI2 in two-wire operation control (1) \ two-wire operation control (2) are used to control start-up/stop and FWD/REV, MI3 and MI4 are used to set multi-function terminals; MI1 to MI3 in three-wire operation control are used to control start-up/stop and FWD/REV, MI4 is used to set multi-function terminal.

Pr.04.19 Settings	Pr.04.04 Settings	External Terminal Control Circuits
Mode 1 Pr.04.19=0	Pr.04.04=0 Single-wire FWD / STOP	FWD/STOP MI1: "OPEN": STOP, "CLOSE": FWD MI2: Multi-function terminals MI3: Multi-function terminals DCM
Mode 2 Pr.04.19=1	Pr.04.04=0 Two-wire operation control (1) FWD / STOP, REV / STOP	FWD/STOP MI1: "OPEN": STOP, "CLOSE": FWD REV/STOP MI2: "OPEN": STOP, "CLOSE": REV MI3: Multi-function terminals DCM

Pr.04.19 Settings	Pr.04.04 Settings	External Terminal Control Circuits
	Pr.04.04=1 Two-wire operation control (2) RUN / STOP, REV / FWD	RUN/STOP FWD/REV MI1: "OPEN": STOP, "CLOSE": RUN MI2: "OPEN": FWD, "CLOSE": REV MI3: Multi-function terminals DCM
	Pr.04.04=2 Three-wire operation control	STOP RUN MI1: "CLOSE": RUN MI2: "OPEN": STOP MI3: "OPEN": FWD, "CLOSE": REV FWD/REV DCM

04.06 Multi-function Input Command 1 (MI2) Default: 1 04.07 Multi-function Input Command 2 (MI3) Default: 14 04.08 Multi-function Input Command 3 (MI4) Default: 5 Settings 0: No function 1: Reserved 2: Reserved 3: Reserved
Default: 1 O4.07 Multi-function Input Command 2 (MI3) Default: 14 O4.08 Multi-function Input Command 3 (MI4) Default: 5 Settings 0: No function 1: Reserved 2: Reserved 3: Reserved
04.07 Multi-function Input Command 2 (MI3) Default: 14 04.08 Multi-function Input Command 3 (MI4) Default: 5 Settings 0: No function 1: Reserved 2: Reserved 3: Reserved
Default: 14 04.08 Multi-function Input Command 3 (MI4) Default: 5 Settings 0: No function 1: Reserved 2: Reserved 3: Reserved
04.08 Multi-function Input Command 3 (MI4) Default: 5 Settings 0: No function 1: Reserved 2: Reserved 3: Reserved
Default: 5 Settings 0: No function 1: Reserved 2: Reserved 3: Reserved
Settings 0: No function 1: Reserved 2: Reserved 3: Reserved
1: Reserved 2: Reserved 3: Reserved
2: Reserved 3: Reserved
3: Reserved
4: Reserved
5: Fault reset
6: Acceleration / deceleration inhibit
7: 1 st and 2 nd acceleration / deceleration time selection
8: JOG command
9: B.B. inputs from external
10: Reserved
11: Reserved
12: Counter trigger
13: Clear the counter
14: External fault input
15: Reserved
16: Output stops
17: Parameter lock enabled
18: Operation command selection: external terminals
19: Reserved
20: Operation command selection: communication
21: Forward / reverse running command

- 22: Second master frequency command source enabled
- 23: Simple positioning stop by forward limit
- 24: Simple positioning stop by reverse limit
- Summary of Function Settings

Settings	Functions	Descriptions				
	No function	Set terminals to have no function to ensure they have no effect on				
0		operations. Set any unused terminals to 0 to avoid errors caused by				
		incorrect wiring or malfunction.				
1	Reserved					
2	Reserved					
3	Reserved	None.				
4	Reserved					
5	Fault reset	Use this terminal to reset the drive after drive faults are cleared.				
6	Acceleration / deceleration inhibit	When this function is enabled, the drive stops acceleration or deceleration immediately. The drive resumes from the inhibit point once this function is disabled. Frequency Setting Accel. inhibit area Accel. inhibit area Actual operation frequency Decel. inhibit				
7	1 st and 2 nd acceleration / deceleration time selection	You can select the acceleration and deceleration time of the drive with the digital status of the terminals; there are two acceleration and deceleration selections. Frequency Frequency Setting Pr.01.10 Pr.01.11 Pr.01.12 Pr.01.12 MIx-GND Operation command				
8	JOG command	Executes the JOG operation only when the drive stops completely. While running, you can still change the operation direction, and the STOP key on the keypad is valid. Once the external terminal receives the OFF				

Settings	Functions	Descriptions					
		command, the motor stops in the JOG deceleration time. Refer to					
		Pr.01.13–Pr.01.15 for details.					
9	B.B. (Base Block) inputs from external	When the AC motor drive receives a Base Block signal, it blocks all output and the motor coasts. When Base Block control is deactivated, the AC drive starts speed tracking from the frequency before blocking and synchronizes with the motor speed. It then accelerates to the master frequency. Even if the motor has been completely stopped after blocking, the drive executes speed tracking immediately once Base Block control is deactivated. (NOTE: bb: Base Block) (See Pr.08.06–Pr.08.07 for details) Dutput frequency The drives traces Speed sync detection (Pr.08.07) Speed sync detection (Pr.08.07)					
10	Reserved	None					
11	Reserved						
12	Counter trigger	Uses external signals such as connecting ON/OFF switch, lightening senor, etc., to trigger the counter. You can also use signals of the multi-function output terminal (counter reached, desired counter reached) to control the applications that based on the counter. For example: winding machine, packing machine. (See Pr.03.05 and Pr.03.06 for details.)					
13	Clear the counter	ON: the current counter value is cleared and displays c0. The drive counts up when this function is disabled.					
14	External Fault (EF) input	When the drive receives status change from the EF terminal, the drive stops output immediately, and EF is displayed on the keypad. The motor coasts. The drive does not run until the external fault is cleared after you press RESET on the keypad. (EF: External Fault)					
15	Reserved	None					
16	Output stops	This terminal is to stop output. AC motor drive stops output and the motor coasts to stop if one of these settings is enabled. If status of the terminal is changed, AC motor drive restarts from 0 Hz.					
17	Parameter lock enabled	ON: all parameter data are read 0. OFF: all parameters can be read.					

Chapter 10 Descriptions of Parameter Settings | LTC

Settings	Functions	Descriptions				
18	Operation command selection (Pr.02.01 setting / external terminals)	ON: operation command through external terminals; OFF: operation command through Pr.02.01 setting. (NOTE: When 18 and 20 are ON at the same time, the priority is settings 18 > setting 20.)				
19	Reserved	None				
20	Operation command selection (Pr.02.01 setting / communication)	ON: operation command through communication; OFF: operation command through Pr.02.01 setting. (NOTE: When 18 and 20 are ON at the same time, the priority is settings 18 > setting 20.)				
21	Forward / reverse running command	Once this function is enabled, ON: reverse running / OFF: forward running, and up/down keys on the keypad cannot be used to change the running direction.				
22	Second master frequency command source enabled	Pr.02.09 settings are valid only when this terminal is ON. Used to switch between first / second master frequency command and operation command source.				
23	Simple positioning stop by forward limit	If a motor receives such signal while running forward, it stops running forward.				
24 Simple positioning stop by reverse limit		If a motor receives such signal while running in reverse, it stops running in reverse.				

04.09 Multi-function Input Contact Selection (N.O./N.C.)

Settings 0–15

Default: 0

- Sets the contact status of external multi-function input terminals MI2–MI4 to be normally open (N.O.) or normally closed (N.C.) according to the start-up / stop mode (Pr.04.19 and Pr.04.04).
- When the start-up/stop mode is single-wired (Pr.04.04=0, Pr.04.19=0), MI1 setting is invalid; when the start-up/stop mode is two-wired (Pr.04.04=0 or 1, Pr.04.19=1), MI2 setting is invalid; when the start-up/stop mode is three-wired (Pr.04.04=2, Pr.04.19=1), MI2 and MI3 settings are invalid. See the table below for details.

Chapter 10 Descriptions of Parameter Settings | LTC

Start-up / Stop Mode			MI4	MI3	MI2	MI1	The Setting of the MI Terminals		
							Multi-function	The Terminals Occupied	
Mode	Pr.04.19	Pr.04.04	Bit 3	Bit 2	Bit 1	Bit 0	Input	by the Start-up / Stop	
							Terminals	Function	
							MI4, MI3, MI2	MI1 is only controlled by	
Single-wire	0	0	0/1	0/1	0/1	-	can be set as	with is only controlled by	
							N.O. or N.C.		
							MI4, MI3 can	MI1, MI2 are only	
Two-wire	1	0 or 1	0/1	0/1	-	-	be set as N.O.	controlled by external	
							or N.C.	terminals	
							MI4 can be	MI1, MI2, MI3 are only	
Three-wire	1	2	0/1	-	-	-	set as N.O. or	controlled by external	
							N.C.	terminals	

Setting method:

Before setting this parameter, convert Bit3–Bit0 that represent the status of MI4–MI1 from binary to decimal.

For example: setting MI3 and MI4 to be 1 = N.C.; setting MI1 and MI2 to be 0 = N.O.. The setting value for Pr.04.09 should be 12.

04.10 Digital Terminal Input Response Time

Default: 1

Settings 1–20 (*2 ms)

This function is to delay and confirm the digital input terminal signal. 2 ms is one unit. The time for delay is also the time for confirmation. The confirmation prevents interference that could cause error in the input to the digital terminals. But in the meanwhile, it delays the response time though confirmation improves accuracy.

04.11	Reserved
04.12	Reserved
04.13	Reserved
04.14	Reserved
04.15	Reserved
04.16	Reserved
04.17	Reserved
04.18	Reserved

04.19 MI Terminal Control Mode Selection

Default: 1

Settings 0: Mode 1, single-wire start-up/stop

1: Mode 2, two-wire/three-wire start-up/stop

- NOTE: MI in the two VFDs of LTC has been pre-defined as two-wire operation control (1) in mode 2, so do NOT change the setting values in Pr.04.04 and Pr.04.19.
- Determines the MI terminal control modes.
- Mode 1: MI1 is the start-up/stop terminal; MI2 and MI3 are the multi-function input terminals.
- Mode 2: MI1, MI2 and MI3 support the two-wire / three-wire start-up.

04.20	Reserved
04.21	Reserved
04.22	Reserved
04.23	Reserved
04.24	Reserved
04.25	Reserved
04.26	Display the Status of Multi-function Input Terminal

Default: Read only

Settings See parameter descriptions below

Displays 15 in Pr.04.26 when all the MI terminals are not active.
 When MI1 (corresponds to bit0) is triggered, and the weight is 1, Pr.04-26=14 (15-1).
 When MI2 (corresponds to bit1) is triggered, and the weight is 2, Pr.04-26=13 (15-2).
 When MI3 (corresponds to bit2) is triggered, and the weight is 4, Pr.04-26=11 (15-4).
 When MI4 (corresponds to bit3) is triggered, and the weight is 8, Pr.04-26=7 (15-8).
 If more than one MI terminals are triggered, use 15 minus the weight that corresponds to the MI terminal.

For example, if you set MI2 and MI3 to be active (ON), Pr.04.26 displays 9 (15-2-4=9, decimal).

04.27 Internal/External Multi-function Input Terminals Selection

Default: 0

Settings 0-15

Selects the terminals MI1–MI4 to be either internal terminal or external terminal. You can activate internal terminals with Pr.04.28. A terminal cannot be both an internal terminal and an external terminal at the same time.

Setting method: Before setting this parameter, convert Bit3–Bit0 that represent the status of MI4–MI1 from binary to decimal. Set MI3 and MI4 as internal terminals; set MI1 and MI2 as external terminals. Pr.04-27 should be set to 12.

04.28 Internal Multi-function Input Terminal Status

Default: 0

Sets the internal terminal action (ON/OFF) through the keypad or communication. And use this parameter with Pr.04.27.

Setting method: To activate MI3 and MI4, set Pr.04.28 to 12.

04.29	Reserved
04.30	Reserved
04.31	Reserved
04.32	Reserved
04.33	Reserved
04.34	Reserved

05 Multi-step Speed Parameters

✓ You can set this parameter during operation.

*	05.00	Reserved
×	05.01	Reserved
*	05.02	Reserved
*	05.03	Reserved
*	05.04	Reserved
×	05.05	Reserved
*	05.06	Reserved
		Default: None

Settings None

MI1 to MI4 in VFD1 and VFD2 of LTC was defined as MI1 (FWD/Stop), MI2 (REV/Stop), MI3 (Emergency Stop), and MI4 (Fault Rest), and cannot be used as multi-step speed.

[This page intentionally left blank]

06 Protection Function Parameters

✓ You can set this parameter during operation.

Default: 780 V

06.00 Over-voltage Stall Prevention

Settings 0: Disabled

660.0–820.0 V

- Setting Pr.06.00 to 0.0 disables the over-voltage stall prevention function (connected with braking unit or brake resistor).
- During deceleration, the DC bus voltage may exceed its maximum allowable value due to motor regeneration in some situations, such as motor's loading inertia being too high. When over-voltage stall prevention is enabled and the DC bus voltage detected is too high, the drive stops decelerating (output frequency remains unchanged) until the DC bus voltage drops below the setting value.
- Use this function when you are unsure about the load inertia. When stopping under normal load, the over-voltage does not occur during deceleration and meet the deceleration time setting. Sometimes it may not stop due to over-voltage during decelerating to STOP when the load regenerative inertia increases. In this case, the AC motor drive extends the deceleration time automatically until the drive stops. If you encounter any problem with the deceleration time, refer to the following guides for troubleshooting. 1. Increase the deceleration time.
 - 2. Install a brake resistor to dissipate the electrical energy that is regenerated from the motor.

06.01 Over-current Stall Prevention during Acceleration

Default: 170

Settings 20-250% (0: Disabled)

During acceleration, the AC motor drive output current may increase abruptly and exceed the value specified in Pr.06.01 due to rapid acceleration or excessive load on the motor. When this function is enabled, the AC motor drive stops accelerating and keeps the output frequency constant until the current drops below this setting.

Default: 170

Settings 20-250% (0: Disabled)

□ If the output current exceeds the setting value for Pr.06.02 when the drive is operating, the drive decreases its output frequency to prevent the motor from stalling. If the output current is lower than the setting value for Pr.06.02, the drive accelerates again to the setting frequency.

06.03 Over-torque Detection Selection

Default: 0

Settings 0: No detection

1: Drive continues operation until OL1 or OL protection is triggered after overtorque is detected during constant speed operation

2: Drive stops and OL2 fault is triggered after over-torque is detected during constant speed operation

3: Drive continues operation until OL1 protection is triggered after over-torque is detected during acceleration and constant speed operation

4: Drive stops and OL2 fault is triggered after over-torque is detected during acceleration and constant speed operation

Determines the operation of the drive after OL2 is triggered. Detection method: If the output current exceeds the Over-torque Detection Level (Pr.06.04) and the detection time is longer than the setting for Pr.06.05 (Over-torque Detection Time), the fault code "OL2" is displayed on the drive. If a multi-function output terminal is set to over-torque detection (Pr.03.00=4), the output is ON. Refer to Pr.03.00 for details.

✓ 06.04 Over-torque Detection Level

Default: 150

Settings 10–200%

I00% corresponds to the rated current of the drive (Pr.00.01).

06.05 Over-torque Detection Time

Default: 0.1

Settings 0.1-60.0 sec.

- Sets the drive's treatments after over-torque detection criteria is defined and after over-torque is detected.
- Over-torque detection criteria: The output current exceeds the Over-torque Detection Level (Pr.06.04) and the detection time is longer than the setting for Pr.06.05 (Over-torque Detection Time). If a multi-function output terminal is set to over-torque detection (Pr.03.00=4), the contact is ON (closed). Refer to Pr.03.00 for details.

06.06 Electronic Thermal Overload Relay Selection (OL1)

Default: 2

- Settings 0: Standard motor (motor with the fan on the shaft)
 - 1: Special motor (with external forced cooling)
 - 2: Disabled
- Prevents self-cooled motor from overheating under low speed. Use an electronic thermal relay to avoid motor burnout due to overheating.

06.07 Electronic Thermal Overload Relay Action Time

Default: 60

Default: 0

Settings 30-600 sec.

Use this parameter to set the action time of the electronic thermal relay. It works based on the I²t characteristic curve of electronic thermal relay, the output frequency and current of the drive, and the operation time to prevent the motor from overheating.

06.08	Fault Record 1 (The Most Recent)
06.09	Fault Record 2
06.10	Fault Record 3
06.11	Fault Record 4
06.12	Fault Record 5

Fault Record Descriptions

ID*	Fault Descriptions
0	No fault record
1	Over-current (oc)
2	Over-voltage (ov)
3	IGBT overheating (oH1)
4	Reserved

ID*	Fault Descriptions
5	Overload (oL)
6	Overload 1 (oL1)
7	Overload 2 (oL2)
8	External Fault (EF)
9	Over-current during acceleration (ocA)
10	Over-current during deceleration (ocd)
11	Over-current during steady operation (ocn)
12	Reserved
13	Reserved
14	Phase loss protection (PHL)
15	Reserved
16	Auto-acceleration/deceleration failure (cFA)
17	Software protection enabled (codE)
18	EEPROM write error (cF1.0)
19	EEPROM read error (cF2.0)
20	Hardware protection fault 1 (HPF1)
21	Hardware protection fault 2 (HPF2)
22	Reserved
23	Hardware protection fault 4 (HPF4)
24	Drive wiring detection fault (cF3.0)
25	Drive wiring detection fault (cF3.1)
26	Drive wiring detection fault (cF3.2)
27	Drive wiring detection fault (cF3.3)
28	Drive wiring detection fault (cF3.4)
29–36	Reserved
37	Multi-motor fault protection (oPHL)
38	IGBT temperature PTC OFF (tH1o)
39–40	Reserved
41	Belt conveyor drive (VFD1) stall failure (StAL)
42	Over-voltage at stop (ovS)
43	Over-voltage during acceleration (ovA)
44	Over-voltage during deceleration (ovd)
45	Over-voltage during constant speed (ovn)

06.13 Motor Phase Loss Detection Time

Default: 0

N

N

Settings 0–60 sec.

06.14 Current Detection for Motor Phase Loss

Settings 10–100%

Default: 30

Chapter 10 Descriptions of Parameter Settings | LTC

Use Pr.06.13 with Pr.06.14. When three-phase imbalance occurs among three-phase motors and the imbalance reaches Pr.06.14 setting percentage (the percentage is 100% equal to the AC motor drives rated current settings in Pr.00.01), and lasts the time set in Pr.06.13, fault code oPHL is triggered and the drive stops to prevent the motor from damage due to the three-phase unbalanced operation.

07 Motor Parameters

✓ You can set this parameter during operation.

Settings 0: Disabled

1: Auto-tuning R1 (motor does not run)

2: Auto-tuning R1 + no-load current (motor runs)

1 and 2: Executes motor parameter auto-tuning once the drive receives RUN command. 1: Only

the R1 value is automatically detected, and Pr.07.01 should be manually entered.

2: Unload the AC motor drive, and values for Pr.07.01 and Pr.07.05 will be automatically entered. The steps for motor auto-tuning are:

- 1. Ensure that all the drive parameters are set to defaults and the motor wiring is correct.
- 2. Ensure that the motor is not loaded before executing auto-tuning and that the shaft is not connected to any belt or reducer.
- 3. Enter the correct values for Pr.01.01 Motor Rated Frequency, Pr.01.02 Motor Rated Voltage, Pr.07.00 Motor Rated Current, and Pr.07.06 Motor Rated Slip (Motor 0).
- 4. After you set Pr.07.04 to 2, the AC motor drive executes auto-tuning immediately after receiving a RUN command (CAUTION: The motor will run! Avoid damage to the drive or personal injury caused by motor running.). The total auto-tuning time is 15 seconds = Pr.01.09 + Pr.01.10. (Higher-power drives need longer acceleration and deceleration time.)
- 5. After auto-tuning is finished, check if Pr.07.01 and Pr.07.05 all have values. If not, set Pr.07.04 again, and then press the RUN key on the keypad to repeat auto-tuning.
- 6. Finally, set Pr.00.10 to 1 and set other parameters according to your application requirements.
- Related parameters: Pr.01.01 Motor Rated Frequency, Pr.01.02 Motor Rated Voltage, Pr.07.00 Motor Rated Current, Pr.07.01 Motor No-load Current, Pr.07.05 Motor Line-to-line Resistance R1 (Motor 0), Pr.07.06 Motor Rated Slip (Motor 0)

NOTE:

- 1. In vector control mode, it is not recommended to have motors run in parallel.
- 2. Vector control mode is not recommended if the motor rated power exceeds the rated power of the AC motor drive.

07.05 Motor Line-to-line Resistance R1 (Motor 0)

Default: 0

Settings $0-65535 \text{ m}\Omega$

This parameter value is automatically set after motor auto-tuning process. You can also set this parameter without using motor parameter auto-tuning. This resistance value is the R value between phase and phase of the motor. Regardless of the motor wiring method, this resistance value is the measured value of any two motor leads.

07.06 Motor Rated Slip (Motor 0)

Default: 3

Settings 0.00-20.00 Hz

- Gets the rated slip of motor load. Enter the actual rated RPM from the motor nameplate.
- Refer to the rated RPM and the number of poles from the motor nameplate and use the following formula to calculate the rated slip:

Rated slip = $F - (N \times P \div 120)$

- F: Rated frequency (Hz)
- N: Rated speed (RPM)
- P: Number of poles in the motor (Pole)

- Assume that the rated frequency of the motor is 60 Hz with 4 poles, and the rated RPM is 1650. The rated slip calculated by the formula is 60 Hz - $(1650 \text{ rpm} \times 4 \div 120) = 5 \text{ Hz}.$
- This parameter is related to Pr.07.03 Slip Compensation Gain. To get the best slip compensation effect, you must enter the correct settings for this parameter. Incorrect settings may cause invalid slip compensation and even damage the motor and the AC motor drive.
- Related parameter: Pr.07.03 Slip Compensation Gain

07.07 Slip Compensation Limit

Default: 200

Settings 0–250%

- Sets the upper limit of the compensation frequency (the percentage of Pr.07.06). If the motor speed is lower than the target speed and the speed does not change after adjusting the Pr.07.03 setting, the AC motor drive may have reached the upper limit of the compensation frequency. In this case, increase the Pr.07.07 setting, and then confirm again.
- Related parameters: Pr.07.03 Slip Compensation Gain, Pr.07.06 Motor Rated Slip (Motor 0)

07.08 Torque Compensation Low Pass Filter Time

Default: 0.1

Settings 0.01–10.00 sec.

This function is usually applied in applications with heavy load where the motor current changes frequently for the current compensation to increase the output torque. The frequent current change can cause machine vibration. In this case, increase the Pr.07.08 setting to solve this problem.

07.09 Slip Compensation Low Pass Filter Time

Default: 0.2

Settings 0.05–10.00 sec.

- This function is usually applied in applications with heavy load where the motor speed changes frequently for the speed compensation to reach the synchronous speed. The frequent speed change can cause machine vibration. In this case, increase the Pr.07.09 setting to solve this problem.
- If you set Pr.07.08 and Pr.07.09 to 10 seconds, the compensation response time is the slowest; however, the system may be unstable if you set the time too short. It depends on actual conditions.

07.10 Accumulated Motor Operation Time

Settings 0: Disabled

00–1439 min.

07.11 Accumulated Motor Operation Time

Default: 0

Default: 0

Settings 00–65535 days

Use Pr.07.10 and Pr.07.11 to record the motor operation time. To clear the operation time, set Pr.07.10 and Pr.07.11 to 0. An operation time shorter than 60 seconds is not recorded in Pr.07.10.

07.12	Reserved
07.13	Reserved
07.14	Reserved
07.15	Reserved
07.16	Reserved
07.17	Reserved

08 Special Parameters ✓ You can set this parameter during operation. 08.00 DC Brake Current Level Default: 0 Settings 0-100% Sets the level of the DC brake current output to the motor at start-up and stop. When setting the DC brake current, the rated current of the drive is 100%. Therefore, when you set this parameter, increase the level slowly to reach the desired braking torque. But the maximum cannot be larger than rated current of the motor. 08.01 DC Brake Time At Start-up Default: 0.0 Settings 0.0-60.0 sec. Determines the duration of the DC brake current output to the motor when the drive starts up. DC Brake Time At STOP 08.02 Default: 0.0 Settings 0.0-60.0 sec. Determines the duration of the DC brake current during stopping. To enable the DC brake when the drive stops, you must set Pr.02.02 (Motor Stop Method) to 0 and 2 (ramp to stop). 08.03 DC Brake Frequency at STOP Default: 0.00 Settings 0.00–400.00 Hz Determines the starting frequency of the DC brake before the drive ramps to stop. When this setting is less than Pr.01.05 (Minimum Output Frequency), the starting frequency for the DC

brake begins at the minimum frequency.

DC Brake Time

- Use the DC brake before running the motor when the load is movable at stop, such as with fans and pumps. The motor coasts and is in unknown rotation direction before the drive starts up. Execute the DC brake before you start the motor.
- Use the DC Brake at STOP when you need to brake the motor quickly or to control the positioning, such as with cranes or cutting machines.

8.04 Restart after Momentary Power Loss

08.04	Restart	atter Momentary Power Loss
		Default: 0
	Settings	0: Operation stops after momentary power loss
		1: Operation continues after momentary power loss, speed tracking starts
		with the last frequency.
		2: Operation continues after momentary power loss, speed tracking starts
		with the minimum frequency.
Determir	nes the op	eration mode when the drive restarts from a momentary power loss.
08.05	Maximu	m Allowable Power Loss Time
		Default: 2.0
	Settings	0.1–20.0 sec.
🚇 Determir	nes the ma	eximum time of allowable power loss. If the duration of a power loss exceeds
this para	meter sett	ing, the AC motor drive stops output after the power recovers.
🕮 Pr.08.04	is valid wl	nen the maximum allowable power loss time is \leq 5 seconds and the AC motor
drive dis	plays L u	. If the AC motor drive is powered off due to overload, even if the maximum
allowable	e power lo	ss time is \leq 5 seconds, Pr.08.04 is invalid after the power recovers.
08.06	Base Blo	ock Speed Tracking
		Default: 1
	Settings	0: Disabled
		1: Speed tracking starts with the last frequency

- 2: Speed tracking starts with the minimum output frequency (Pr.01.05)
- Determines the AC motor drive restart method after an external base block is enabled.

08.07 Base Block Time for Speed Tracking

Default: 0.5

Settings 0.1-5.0 sec.

- When momentary power loss is detected, the AC motor drive blocks its output and then waits for a specified period of time (determined by Pr.08.07, called Base Block Time) before resuming operation. Set this parameter to the time that allows the residual voltage at the output side to decrease to 0V before activating the drive again.
- This parameter also determines the waiting time before resuming operation after an external base block and Number of Times of Restart after Fault (Pr.08.15).

08.08 Current Limit for Speed Tracking

Default: 150

Settings 30–200%

- Limits the drive output current during a speed tracking.
- When executing a speed tracking, the V/F curve is defined by the settings in Parameter Group 01.

Chapter 10 Descriptions of Parameter Settings | LTC

Timing Diagram of Restart after Momentary Power Loss

08.09 Skip Frequency 1 (Upper Limit)
 08.10 Skip Frequency 1 (Lower Limit)
 08.11 Skip Frequency 2 (Upper Limit)
 08.12 Skip Frequency 2 (Lower Limit)
 08.13 Skip Frequency 3 (Upper Limit)
 08.14 Skip Frequency 3 (Lower Limit)

Settings 0.00-400.0 Hz

Sets the AC motor drives skip frequency. The drives frequency setting skips these frequency ranges. However, the frequency output is continuous. Set these six parameters as follows Pr.08.09 ≥ Pr.08.10 ≥ Pr.08.11 ≥ Pr.08.12 ≥ Pr.08.13 ≥ Pr.08.14.

08.15 Number of Times of Restart after Fault

Default: 0

Settings 0–10

08.16 Auto-restart Interval of Fault

Default: 60

Settings 0.1-6000 sec.

Sets the times that the AC motor drive can reset and restart automatically after fault (allowed fault: oc, ov) is triggered.

If Pr.08.15 is set to 0, the drive does not reset or restart automatically after faults are triggered. The drive starts speed tracking with the last frequency after restarting after fault. Use this parameter with Pr.08.15. For example, when Pr.08.15=10 and Pr.08.16=600 seconds (10 minutes), the number of times of restart after fault will be automatically reset to 10 if no more fault occurs over 600 seconds since restart from previous fault.

08.17 Automatic Energy-saving

Default: 0

Settings 0: Automatic energy-saving operation is disabled

1: Automatic energy-saving operation is enabled

When energy-saving is enabled, the motor acceleration/deceleration operates with full voltage. During constant speed operation, it automatically calculates the best voltage value according to the load power. This function is not suitable for fluctuating loads or loads which are nearly full during operation.

Settings 0: AVR function is enabled

08.18

- 1: AVR function is disabled
- 2: AVR function is disabled during deceleration
- 3: AVR function is disabled at stop
- The rated voltage of a 220V motor is usually 200 V_{AC}, 60 Hz / 50 Hz, and the input voltage of the AC motor drive may vary from 180–264 V_{AC}, 50 Hz / 60 Hz. Therefore, when the AC motor drive is used without the AVR function, the output voltage is the same as the input voltage. When the motor runs at the voltage exceeding 12–20% of the rated voltage, it causes higher temperatures, damaged insulation, and unstable torque output, which result in losses due to shorter motor lifetime.
- The AVR function automatically regulates the output voltage of the AC motor drive to the motor's rated voltage when the input voltage exceeds the motor's rated voltage. For example, if the V/F curve is set at 200 V_{AC} / 50 Hz and the input voltage is at 200–264 V_{AC} , then the drive automatically reduces the output voltage of the motor to a maximum of 200 V_{AC} / 50 Hz. If the input voltage is at 180–200 V_{AC} , the output voltage to motor is in direct proportion to the input voltage.

Chapter 10 Descriptions of Parameter Settings | LTC

When the motor ramps to stop, disabling the AVR function would shorten the deceleration time. Moreover, using with the auto-acceleration and auto-deceleration functions makes the motor's deceleration quicker.

	08.19	Reserved
×	08.20	Vibration Suppression

Default: 0

Settings 0.0-5.0

The drift current occurs in a specific frequency area of the motor and it causes serious motor vibration. It is recommended to use this parameter (the recommended value is 2.0) to greatly improve this situation. (The drift current zone for high-power motors is usually in the low frequency area.)

08.21	Reserved
08.22	Reserved
08.23	Reserved
08.24	Reserved
08.25	Reserved

09 Communication Parameters

✓ You can set this parameter during operation.

VFD1

RJ45

VFD2

RJ45

Modbus RS-485

PIN 3: GND

PIN 4: SG-

PIN 5: SG+

PIN 8: EV

PIN 1, 2, 6, 7: Reserved

8-1

- 1. To connect to PC, use Delta IFD6500 as a communication converter (from RS-485 to USB).
- 2. To connect to panel, use digital keypad PU08 or PU08V.
- PIN 8: EV (power Vcc port). Used as power and works only with optional digital keypad PU08 or PU08V.

09.00 Communication Address

Default: 1

Default: 2

Default: 3

Settings 1-254

Sets the communication address for the drive if the AC motor drive is controlled through RS-485 serial communication. The communication address for each AC motor drive must be unique.

09.01 Transmission Speed

Settings 0: Baud rate 4800 bps

- 1: Baud rate 9600 bps
- 2: Baud rate 19200 bps

Sets the transmission speed between the computer and the AC motor drive.

09.02 Transmission Fault Treatment

Settings 0: Warn and continue operation

1: Fault and ramp to stop

- 2: Fault and coast to stop
- 3: No warning, no fault and continue operation

Determines how the AC motor drive reacts if a transmission fault occurs.

09.03 Communication Time-out Detection

Default: 0

Settings 0.1–120.0 sec.

0.0: No function

Sets detection time of communication time-out for serial communications. If Pr.09.03 is not equal to 0.0, and Pr.09.02=0–2, and there is no communication on the bus during the timeout detection period (set by Pr.09.03), the digital keypad displays "cE10".

09.04

Communication Protocol

Settings 0: 7, N, 2 for ASCII 1: 7, E, 1 for ASCII 2: 7, O, 1 for ASCII 3: 8, N, 2 for RTU 4: 8, E, 1 for RTU 5: 8, O, 1 for RTU 6: 8, N, 1 for RTU 7: 8, E, 2 for RTU 8: 8, O, 2 for RTU 9: 7, N, 1 for ASCII 10: 7, E, 2 for ASCII 11: 7, O, 2 for ASCII

Control by PC (Computer Link): When using the RS-485 serial communication interface, each drive's communication address must be specified in Pr.09.00. The computer then implements control using the drives' individual addresses.

Default: 3

- LTC series drive uses Modbus network protocol. You can set a LTC drive to communicate over Modbus networks using one of the following modes: ASCII (American Standard Code for Information Interchange) or RTU (Remote Terminal Unit). Data transmitted using ASCII mode must be converted to ASCII code first before transmission; data transmitted using RTU mode can transfer directly without converting. See below for code descriptions for ASCII mode.
- 1. Code Description

The CPU delays about 1 second when using the communication reset; therefore, there is at least 1 second delay time in the master station.

Each data byte is the combination of two ASCII characters. For example, a 1-byte of data: 64 Hex, is shown as '64' in ASCII, and consists of '6' (36Hex) and '4' (34Hex). The communication protocol is in hexadecimal, ASCII: "0"..."9", "A"..."F", every hexadecimal value represents an ASCII code. The table below shows some example.

'0'	'1'	'2'	'3'	'4'	'5'	'6'	'7'
30H	31H	32H	33H	34H	35H	36H	37H
'8'	'9'	'A'	'B'	'C'	'D'	'E'	'F'
38H	39H	41H	42H	43H	44H	45H	46H
	'0' 30H '8' 38H	'0' '1' 30H 31H '8' '9' 38H 39H	'0' '1' '2' 30H 31H 32H '8' '9' 'A' 38H 39H 41H	'0' '1' '2' '3' 30H 31H 32H 33H '8' '9' 'A' 'B' 38H 39H 41H 42H	'0' '1' '2' '3' '4' 30H 31H 32H 33H 34H '8' '9' 'A' 'B' 'C' 38H 39H 41H 42H 43H	'0' '1' '2' '3' '4' '5' 30H 31H 32H 33H 34H 35H '8' '9' 'A' 'B' 'C' 'D' 38H 39H 41H 42H 43H 44H	'0' '1' '2' '3' '4' '5' '6' 30H 31H 32H 33H 34H 35H 36H '8' '9' 'A' 'B' 'C' 'D' 'E' 38H 39H 41H 42H 43H 44H 45H

2. Data Format

For ASCII

(Format: 7, N, 2)

(Format: 7, E, 1)

(Format: 7, 0, 1)

(Format: 7, N, 1)

(Format: 7, E, 2)

(Format: 7, 0, 2)

(Format: 8, N, 2)

Chapter 10 Descriptions of Parameter Settings | LTC

3. Communication Protocol

3.1 Communication Data Frame

ASCII mode:

STX	Start character = '∶'(3AH)
Address High	Communication address:
Address Low	one 8-bit address consists of 2 ASCII codes
Function High	Command code:
Function Low	one 8-bit command consists of 2 ASCII codes
DATA (n-1)	Contents of data:
to	n × 8-bit data consists of 2n ASCII codes
DATA 0	$n \le 20$, maximum of 40 ASCII codes (20 sets of data)
LRC Check High	LRC checksum:
LRC Check Low	one 8-bit checksum consists of 2 ASCII codes
END High	End characters:
END Low	END High = CR (0DH), END Low = LF (0AH)

RTU mode:

START	Defined by a silent interval of larger than / equal to 10 ms		
Address	Communication address: 8-bit binary address		
Function	Command code: 8-bit binary command		
DATA (n-1)	Contents of data		
to	Contents of data: $p \neq 0$ bit data $p \neq 10$ (20 acts of 16 bit data)		
DATA 0	11×0 -bit data, $11 \ge 40$ (20 sets of 10-bit data)		
CRC Check Low	CRC checksum:		
CRC Check High	one 16-bit CRC checksum consists of 2 8-bit binary characters		
END	Defined by a silent interval of larger than / equal to 10 ms		

- 3.2 Communication Address (Address)
- 00H: broadcast to all AC motor drives
- 01H: AC motor drive of address 01
- 0FH: AC motor drive of address 15

3.3 Function (Function Code) and DATA (Data Characters)

03H: read data from a register

06H: single write, write single data to a register

08H: Loop detection

(1) 03H: read data from a register (can read at most 20 sets of data simultaneously) Example: Reading two continuous data from register address 2102H, AMD address is 01H.

Chapter 10 Descriptions of Parameter Settings | LTC

ASCII mode:

Command M	essage	Response Message		
STX	·	STX	<i>د</i> ر <i>ب</i>	
Address	'0'	Address	' 0'	
Address	'1'	Address	'1'	
Function	ʻ0'	Function	' 0'	
FUNCTION	'3'	Function	'3'	
	'2'	Number of data	' 0'	
Starting address	'1'	(count by byte)	'4'	
Starting address	'0'		'1'	
	'2'	Content of starting address	'7'	
	' 0'	2102H	'7'	
Number of data	'0'		' 0'	
(count by word)	'0'		' 0'	
	'2'	Content of address 2102U	' 0'	
LDC Charle	'D'	Content of address 2103H	' 0'	
	'7'		' 0'	
	CR		'7'	
EIND	LF		'1'	
			CR	
		END	LF	

RTU mode:

Command Me	essage	Response Message		
Address 01H		Address	01H	
Function	03H	Function	03H	
Starting data address	21H	Number of data (count by byte)	04H	
	02H	Content of data address	17H	
Number of data	00H	2102H	70H	
(count by word)	02H	Content of data address	00H	
CRC Check Low	6FH	2103H	00H	
CRC Check High	F7H	CRC Check Low	FEH	
		CRC Check High	5CH	

(2) 06H: single write, write single data to a register (can write at most 20 sets of data simultaneously)

Example: Writing data 6000 (1770H) to register 0100H. AMD address is 01H.

ASCII mode:

Command Message		Response Message	
STX	<i>د</i> .،	STX	(.)
Address	ʻ0'	A data a a	'0'
	'1'	Address	'1'
Function	'0'	Function	'0'
	'6'		·6'
Data address	'0'	Data address	'0'
	'1'		'1'
	ʻ0'		ʻ0'

	·0'		ʻ0'
Data content	'1'		'1'
	'7'	Dete content	'7'
	'7'		'7'
	' 0'		ʻ0'
LRC Check	'7'		'7'
	'1'	LRC Check	'1'
END	CR		CR
	LF	END	LF

RTU mode:

Command Message		Response Message	
ADR	01H	ADR	01H
CMD	08H	CMD	08H
Data	00H	Data	00H
	00H	Data	00H
Data	17H	Dete	17H
	70H	Data	70H
CRC Check Low	8EH	CRC Check Low	8EH
CRC Check High	0EH	CRC Check High	0EH

3.4 Checksum

ASCII mode (LRC Check):

LRC (Longitudinal Redundancy Check) is calculated by summing up the values of the bytes from ADR1 to the last data character then calculating the hexadecimal representation of the 2'scomplement negation of the sum. For example, as shown in the above Section 3.3.(1): 01H + 03H + 21H + 02H + 00H + 02H = 29H, the 2's-complement negation of 29H is D7H. RTU mode (CRC Check):

Starts from Address and ends at Data Content. It is calculated by the following steps:

Step 1: Load a 16-bit register (called CRC register) with FFFFh.

- Step 2: Exclusive OR the first 8-bit byte of the command message with the low order byte of the 16-bit CRC register, putting the result in the CRC register.
- Step 3: Examine the LSB of CRC register.

. . .

- Step 4: If the LSB of CRC register is 0, shift the CRC register one bit to the right, fill MSB with zero, then repeat step 3. If the LSB of CRC register is 1, shift the CRC register one bit to the right, fill MSB with zero, Exclusive OR the CRC register with the polynomial value A001H, then repeat step 3.
- Step 5: Repeat step 3 and 4 until you perform eight shifts. This processes a complete 8-bit byte.
- Step 6: Repeat step 2 through 5 for the next 8-bit byte of the command message. Continue doing this until all bytes are processed. The final contents of the CRC register are the CRC value. When transmitting the CRC value in the message, the upper and lower bytes of the CRC value must be swapped, that is, the lower order byte is transmitted first.

The following is an example of CRC generation using C language. The function takes two arguments:

```
unsigned char* data
                        \leftarrow // a pointer to the message buffer
unsigned char length \epsilon // the quantity of bytes in the message buffer
unsigned int crc_chk(unsigned char* data, unsigned char length)
  {
  int j;
  unsigned int reg_crc=0xffff;
  while(length--){
    reg crc ^= *data++;
    for(j=0;j<8;j++){
      if(reg crc & 0x01){ /* LSB(b0)=1 */
        reg_crc=(reg_crc>>1) ^ 0xa001;
      }else{
         reg_crc=reg_crc >>1;
      }
    }
 }
```

return reg_crc; // return register to CRC

4. Address list

Content	Address		Function
AC motor drive	GGnnH	GG means	parameter group, nn means parameter number. For
parameters		example, th	ne address of Pr.04.01 is 0401H.
Operation command	2000H	bit0–1	00B: No function
			01B: Stop
			10B: Run
			11B: JOG + RUN
		bit2–3	Reserved
		bit4–5	00B: No function
			01B: FWD
			10B: REV
			11B: Change direction
		bit6–7	00B: 1st step accel./decel.
			01B: 2nd step accel./decel.
		bit8–15	Reserved
	2001H	Frequency command	
	2002H	bit0	1: External Fault (E.F.) ON
		bit1	1: Reset
		bit2	1: Base Block (B.B.) ON
		bit3–4	Depended
		bit6–15	Reserved
Fault status	2100H	Fault code:	
		0: No fault i	record
		1: Over-cur	rent (oc)
		2: Over-volt	tage (ov)

Content	Address		Function		
		3: IGBT ove	rheating (oH1)		
		4: Reserved			
		5: Overload	(oL)		
		6: Overload	1 (oL1)		
		7: Overload	2 (oL2)		
		8: External F	Fault (EF)		
		9: Over-curr	ent during acceleration (ocA)		
		10: Over-cu	rrent during deceleration (ocd)		
		11: Over-cu	rrent during steady operation (ocn)		
		12: Reserve	d		
		13: Low volt	age (Lv)		
		14: Phase lo	oss protection (PHL)		
		15: Reserve	d		
		16: Auto-aco	celeration/deceleration failure (cFA)		
		17: Software	e protection enabled (codE)		
		18: EEPRO	M write error (cF1.0)		
		19: EEPRO	M read error (cF2.0)		
		20: Hardwai	re protection fault 1 (HPF1)		
		21: Hardwai	re protection fault 2 (HPF2)		
		22: Reserve	d		
		23: Hardwai	re protection fault 4 (HPF4)		
		24: Drive wiring detection fault (cF3.0)			
		25: Drive wi	ring detection fault (cF3.1)		
		26: Drive wi	ring detection fault (cF3.2)		
		27: Drive wi	ring detection fault (cF3.3)		
		28: Drive wi	ring detection fault (cF3.4)		
		29: Reserve	d		
		30: Reserve	d		
		31: Reserve	d		
		32: Reserve	2: Reserved		
		33: Reserve	d		
		34: Reserve	4: Reserved		
		35: Reserve	35: Reserved		
		36: Reserve	d		
		37: Multi-mo	otor fault protection (oPHL)		
		38: IGBT ter	mperature PTC OFF (tH1o)		
		39–40: Rese	erved		
		41: Belt con	veyor drive (VFD1) stall failure (StAL)		
		42: Over-voltage at stop (ovS)			
		43: Over-voltage during acceleration (ovA)			
		44: Over-voltage during deceleration (ovd)			
		45: Over-voltage during constant speed (ovn)			
	2101H	1H bit0–1 Drive operation status			
			00B: Drive fully stops		
			(RUN indicator is OFF / STOP indicator is ON)		
			01B: Drive is stopping		
			(RUN indicator flashes / STOP indicator is ON)		

Content	Address		Function
			10B: Drive is in standby status
			(RUN indicator is ON / STOP indicator flashes)
			11B: Drive is running
			(RUN indicator is ON / STOP indicator is OFF)
		bit2	1: JOG command
		bit3–4	00B: Drive runs forward
			(FWD indicator is ON / REV indicator is OFF)
			01B: Drive runs from reverse to forward
			(FWD indicator is ON / REV indicator flashes)
			10B: Drive runs from forward to reverse
			(FWD indicator flashes / REV indicator is ON)
			11B: Drive runs in reverse
			(FWD indicator is OFF / REV indicator is ON)
		bit5–7	Reserved
		bit8	1: Master frequency controlled by the communication
			interface
		bit9	1: Master Frequency command controlled by analog
			signal input
		bit10	1: Operation command controlled by the
			communication interface
		bit11–15	Reserved
	2102H	Frequency	command (F)
	2103H	Output freq	uency (H)
	2104H	Output curre	ent (AXX.X)
	2105H	Reserved	
	2106H	Reserved	
	2107H	Reserved	
	2108H	DC bus voltage (uXXX.X)	
	2109H	Output volta	age (EXXX.X)
	210AH	IGBT tempe	erature (°C)
	2116H	User-defined (Low word)	
	2117H	User-defined (High word)	

NOTE:

2116H is the data value of Pr.00.04, 2117H high byte is the decimal places of Pr.00.04, and low byte is the ASCII code of Pr.00.04.

Exception response

When the drive is using the communication connection, if an error occurs, the drive responds to the error code and sets the highest bit (bit 7) of the command code to 1 (function code AND 80H) then responds to the control system to signal that an error occurred. If the keypad displays "CE.XX" as a warning message, "XX" is the error code at that time. Refer to the table of error codes below for communication error for reference.

The table below shows some example.

ASCII mode:		RTU mode:	
STX	(_) _	Address	01H
Address	'0'	Function	86H
Address	'1'	Exception code	02H
Function	'8'	CRC CHK Low	C3H
	'6'	CRC CHK High	A1H
Exception code	'0'		
	'2'		
LRC CHK	'7'		
	'7'		
	CR		
END	LF		

The explanation of exception codes:

Error code	Description
01	Function code error: recognized function codes by the drive are 03H,
	06H, 08H, and 10H.
02	Incorrect data address: unrecognized data address by the drive.
03	Incorrect data content: data content is too large, and cannot be
	recognized by the drive.
04	Unable to be processed by the drive: commands cannot be executed
	by the drive.
10	Transmission time-out.

Communication program of PC:

The following is a simple example of how to write a communication program for Modbus ASCII mode on a PC by C language.

#include<stdio.h>
#include<dos.h>
#include<conio.h>
#include<process.h>
#define PORT 0x03F8 /* the address of COM1 */
/* the address offset value relative to COM1 */
#define THR 0x0000
#define RDR 0x0000
#define BRDL 0x0000
#define IER 0x0001

#define BRDH 0x0001

```
#define LCR 0x0003
#define MCR 0x0004
#define LSR 0x0005
#define MSR 0x0006
unsigned char rdat[60];
/* read 2 data from address 2102H of AC drive with address 1 */
unsigned char tdat[60] = \{:, 0, 1, 0, 3, 2, 1, 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..., 0, ..
                                                                                                                                         '2, 0,0,0,2,D,7,
                                                                                                                                                                                                      \r, \n};
void main(){
       int i;
       outportb(PORT+MCR,0x08);
                                                                                                                                     /* interrupt enable */
       outportb(PORT+IER,0x01);
                                                                                                                                 /* interrupt as data in */
       outportb(PORT+LCR,(inportb(PORT+LCR) | 0x80));
              /* the BRDL/BRDH can be access as LCR.b7==1 */
        outportb(PORT+BRDL,12);
                                                                                                                                    /* set baudrate=9600, 12=115200/9600*/
        outportb(PORT+BRDH,0x00);
        outportb(PORT+LCR,0x06);
                                                                                                                                   /* set protocol, <7,N,2>=06H,
                                                                                                                                              <7,E,1>=1AH
                                                                                                                                              <7,0,1>=0AH,
                                                                                                                                              <8,N,2>=07H,
                                                                                                                                              <8,E,1>=1BH,
                                                                                                                                              <8,0,1>=0BH
                                                                                                                                              */
       for(i=0;i<=16;i++){
              while(!(inportb(PORT+LSR) & 0x20)); /* wait until THR empty */
              outportb(PORT+THR,tdat[i]);
                                                                                                                            /* send data to THR */
                                                                                                                                                                                                           }
       i=0;
       while(!kbhit()){
              if(inportb(PORT+LSR) & 0x01){ /* b0==1, read data ready */
                      rdat[i++]=inportb(PORT+RDR); /* read data form RDR */
              }
                           }
                                                 }
```

	09.05	Reserved
	09.06	Reserved
×	09.07	Communication Response Delay Time

Default: 1.0

```
Settings 0.0–200.0 ms (One unit: 2 ms)
```

If the host controller does not finish the transmitting/receiving process, you can use this parameter to set the response delay time after the AC motor drive receives communication command as shown in the following picture.

10 Speed Feedback Control Parameters

✓ You can set this parameter during operation.

Parameter Group 10, from Pr.10.00 to Pr.10.50, are all "reserved".

10.00		
_	Reserved	
10.50		

[This page intentionally left blank]

Chapter 11 Troubleshooting

For users to easily find common errors and solutions

- 11-1 Over-current (oc)
- 11-2 Over-voltage (ov)
- 11-3 Low voltage (Lv)
- 11-4 Overheat (oH1)
- 11-5 Overload (oL)
- 11-6 Keypad Display is Abnormal
- 11-7 Phase Loss (PHL)
- 11-8 Motor Does Not Run
- 11-9 Motor Speed Cannot be Changed
- 11-10 Motor Stalls During Acceleration
- 11-11 Motor is Abnormal
- 11-12 Electromagnetic / Induction Noise
- 11-13 Operating Environment Condition
- 11-14 Affecting Other Machines
- 11-15 Indicator Description

 $\ensuremath{\boxtimes}$ Only qualified personnel can work on troubleshooting to prevent accidents.

11-1 Over-current (oc)

11-2 Over-voltage (ov)

11-3 Low voltage (Lv)

11-4 Overheat (oH1)

11-5 Overload (oL)

11-6 Keypad Display is Abnormal

11-7 Phase Loss (PHL)

11-8 Motor Does Not Run

11-9 Motor Speed Cannot be Changed

11-10 Motor Stalls During Acceleration

11-11 Motor is Abnormal

11-12 Electromagnetic / Induction Noise

Many sources of noise surround AC motor drives and affect them by radiation or conduction. This may cause the control circuits to malfunction and even trip or damage the AC motor drive. Of course, there are solutions to increase the noise tolerance of an AC motor drive, but this has its limits. Solving the problem from the outside as follows is the best.

- 1. Add a surge suppressor on relays or contactors to suppress noise caused by switching surges during switch ON and OFF.
- 2. Shorten the length of the wiring for the control circuit or serial communication and keep them separated from the power circuit wiring.
- 3. Comply with the wiring regulations by using shielded wires and isolation amplifiers for long wire length.
- 4. The grounding terminal must comply with the local regulations and be grounded independently; that is, do not use a common ground with electric welding machines and other power equipment.
- 5. Connect a noise filter at the mains input terminal of the AC motor drive to filter noise from the power circuit.

In short, solutions for electromagnetic noise exist of "no product" (disconnect disturbing equipment), "no spread" (limit emission from disturbing equipment) and "no receive" (enhance immunity).

11-13 Operating Environment Condition

Since the AC motor drive is an electronic device, you must deal with the operating environment conditions. Here are some remedial measures to use if necessary.

- To prevent vibration, anti-vibration dampers are the last choice. Vibration must be within the specification. Vibration causes mechanical stress and it should not occur frequently, continuously or repeatedly to prevent damage to the AC motor drive.
- 2. Store the AC motor drive in a clean and dry location, free from corrosive fumes/dust to prevent corrosion and poor contacts. Poor insulation in a humid location can cause short circuits. If necessary, install the AC motor drive in a dust-proof and painted enclosure. If necessary in particular situations, use a completely sealed enclosure.
- 3. The ambient temperature should be within the specification. Too high or too low temperature affects the lifetime and reliability of the AC motor drive. For semiconductor components, damage occurs once any specification is out of range. It is necessary to periodically check air quality and the cooling fan and provide extra cooling if required. In addition, the microcomputer may not work in extremely low temperatures, making cabinet heating necessary.
- 4. Store the AC motor drive in a relative humidity range of 0% to 90% (non-condensing). Use an air conditioner and/or desiccator if necessary.

11-14 Affecting Other Machines

An AC motor drive may affect the operation of other machines due to many reasons. Some solutions are listed below:

High Harmonics at Power Side

You can reduce high harmonics at the power side during running.

- 1. Separate the power system: use a transformer for the AC motor drive.
- 2. Use a reactor at the power input terminal of the AC motor drive, as the figure below shows.

3. If using phase lead capacitors (never on the AC motor drive output!), use serial reactors to prevent damage to the capacitors from high harmonics.

Motor Temperature Rises

When the motor is a standard induction motor with a fan, the cooling will be insufficient at low speed, causing the motor to overheat. In addition, high harmonics at the output increases copper and core losses. Use the following measures depending on load and operation range.

- 1. Use a motor with independent ventilation (forced external cooling) or increase the motor rated power.
- 2. Use an inverter-duty motor.
- 3. Do NOT run at low speed for long periods of time.

11-15 Indicator Description

No.	LED Indicator Name	Color	Description
1	POWER	Green	ON: LTC is powered with three-phase power
2	PLC	Green	OFF: PLC stops running
			1. ON: PLC error
			2. Flashes (ON for 1s and OFF for 1s) in circulation: Belt
			conveyor motor drive error
3	ERROR	Red	3. Flashes (ON for 2s and OFF for 0.5s) in circulation:
			Telescopic motor drive error
			Error indication priority: PLC error > belt conveyor motor
			drive error > telescopic motor drive error
4	EWD (loft side)	Croop	ON: The running direction that VFD1 corresponds to the motor is
4	FVVD (left side)	Green	forward
5	DEV (loft side)	Croop	ON: The running direction that VFD1 corresponds to the motor is
5	REV (leit side)	Green	reverse
6	EWD (right aida)	Croop	ON: The running direction that VFD2 corresponds to the motor is
0	FWD (fight side)	Green	forward
7	DEV (right side)	Croop	ON: The running direction that VFD2 corresponds to the motor is
7	REV (light side)	Green	reverse
8	DI input (X contacts)	Green	ON: X0 to X20, corresponding DI signal inputs are valid
			ON: Y0 to Y7, corresponding DO signal outputs are valid.
9	DO output (Y contacts)	Green	Among them, Y7-1 and Y7-2 use the same relay, that is, they
			use only one LED indicator to indicate ON/OFF.
10	DC POWER	Green	ON: Power 24 V _{DC} is normal

Chapter 12 Fault Codes and Maintenance

- 12-1 Faults and Corrective Action
- 12-2 Fault Codes and Descriptions
- 12-3 Maintenance and Inspections

Chapter 12 Fault Codes and Maintenance | LTC

The AC motor drive has various warnings and protections against errors such as over-voltage, low voltage, or over-current. Once an error occurs, the protections activate, the AC motor drive stops output, activates the error contacts, and the motor coasts to stop. Please refer to the warning/fault display from the AC motor drive and look up the corresponding causes and corrective actions in this chapter. The fault record is stored in the AC motor drive internal memory and can store the five most recent error messages. You can read it from the digital keypad or through the communications by accessing the parameters.

The AC motor drive includes a large number of electronic components, including ICs, resistors, capacitors, transistors, and cooling fans. These components do not last forever. Even under normal circumstances, they will eventually become error-prone if used past their lifespans. Therefore, you must perform periodic preventive maintenance to identify defective and worn out parts, and eliminate the causes of malfunctions in the AC motor drive at an early stage. At the same time, parts that have exceeded their product life should be replaced whenever possible to ensure safe operation.

Visual checks should be done regularly to monitor the AC motor drives operation, and to make sure nothing unusual happens. Check the situations listed in the following table.

U		
	V	Wait five seconds after a fault has been cleared before pressing RESET key on the
		keypad.
	$\mathbf{\nabla}$	The drive must first be switched off for at least five minutes for \leq 22 kW models
CAUTION		until the charging indicator turns off.
	V	Only qualified personnel can work on maintenance or replace parts. (Remove
		metal items such as watch, rings, and other metal items before operation, and use
		only insulated tools.)
	\checkmark	Never modify internal components or wiring.
	\square	The performance and the surrounding environment should meet the standard
		specifications. There should be no abnormal noise, vibration, or odor.
	$\mathbf{\nabla}$	Verify if the keypad displays normally. Check if there is any abnormality such as
		overheating or color change. Prevent the drive from electric shock and equipment
		accident.

12-1 Faults and Corrective Action

No.	Fault Descriptions	Corrective Actions		
1	ERROR indicator flashes with red light when LTC is powered ON.	 Check if EF fault occurs by using VFDSoft software, communication panel PU08 or PU08V. If EF fault occurs, make sure that EF terminal is correctly connected to emergency stop circuit (channels between 24V (Digital signal common terminal Source) – emergency stop switch N.C. contact – EF terminal can be connected in series). If EF function is unnecessary for your application, set Pr.04.07 of both VFD1 and VFD2 to 0 by using VFDSoft software, communication panel PU08 or PU08V. If it is not an EF fault, see other fault corrective actions in this 		
		user manual.		
2	Contact Y does not light on, does not output, and cannot drive the load.	 Check if PLC program runs normally. Check if the relay is correctly installed. Replace with a new one if the relay is malfunctioned. 		
_	Contact Y lights on, but	1. Check if the relay is correctly installed.		
3	does not output.	2. Replace with a new one if the relay is malfunctioned.		
4	Motor 1 or Motor 2 does not run.	Connect VFDSoft software, communication panel PU08 or PU08V with communication interface (RJ45) of VFD1 and VFD2 respectively to check the fault of the drive. Troubleshoot the fault (such as mechanism, electricity) according to the descriptions in Chapter 11 and 12 in LTC user manual. Then, press RESET key on the keypad.		

12-2 Fault Codes and Descriptions

The following messages display when the operation command source is set as digital keypad.

Fault Code	Fault Descriptions	Corrective Actions
00	Over-current (oc) Abnormal increase in current	Check if the motor power corresponds with the AC motor drive output power. Check the wiring connections to U, V and W for possible short circuits. Check the wiring connections between the AC motor drive and motor for possible short circuits, and for short to ground. Check for loose contacts between the AC motor drive and the motor. Increase the acceleration time. Check for possible excessive loading on the motor.
00	Over-voltage (ov) DC bus over-voltage during deceleration.	Check if the input voltage is within the rated AC motor drive input voltage range, and check for possible voltage spikes. If DC bus over-voltage is caused by motor regeneration, increase the deceleration time.
o X 1	IGBT overheating (oH1) Heat sink temperature is too high, and exceeds the protection level.	Ensure that the ambient temperature is in the specified temperature range. Check if there is any obstruction on the heat sink or if the fan is running. Check if there is any insufficient ventilation space
Lu	Low voltage (Lv) The AC motor drive detects that the DC bus voltage has fallen below its minimum value.	Check whether the input voltage is in the AC motor drive rated input voltage range. Check for abnormal load on the motor. Check if any single phase power input to three-phase model or phases loss.
ol	Overload (oL) The AC motor drive detects excessive drive output current. NOTE: The AC motor drive can sustain up to 150% of the rated current for a maximum of 60 seconds.	Check if the motor is overloaded. Reduce the torque compensation setting (Pr.07.02). Increase the drive output capacity.
ol I	Overload 1 (oL1) Internal electronic overload trip	Check if the motor is overloaded. Check if the motor rated current setting (Pr.07.00) is appropriate. Check the electronic thermal overload setting. Increase the motor capacity.

Fault Code	Fault Descriptions	Corrective Actions		
	$O_{\rm V}$ or load 2 (a) 2)	Check if the motor is overloaded.		
ol2	Overload 2 (OL2)	Adjust the over-torque detection settings to		
		appropriate values (Pr.06.03–Pr.06.05).		
XPF ;	Hardware protection fault 2 (HPF1)	CC OC (current clamp) apportal bardware		
	Abnormal hardware protection wiring of	protection wiring return the unit to the factory		
	the controller.			
X855	Hardware protection fault 2 (HPF2)	OV abnormal hardware protection wiring		
	Abnormal hardware protection wiring of	return the unit to the factory.		
	the controller.			
	Hardware protection fault 2 (HPF4)	OC abnormal hardware protection wiring.		
8884	Abnormal hardware protection wiring of	return the unit to the factory.		
	the controller.	· · · · · · · · · · · · · · · · · · ·		
		Check for loose contacts between the AC		
		motor drive and the motor.		
		Check for poor insulation wiring from U-V-W		
Ō	Over-current during acceleration	to the motor.		
OCN	(ocA)	Increase the acceleration time		
		Reduce the torque compensation setting		
		(Pr.07.02). Deplete the drive with a larger conseity		
		model		
		Check for poor insulation wiring from LI-V-W		
		to the motor		
o c d	Over-current during deceleration (ocd)	Increase the deceleration time.		
		Replace the drive with a larger capacity		
		model.		
		Check for poor insulation wiring from U-V-W		
	Over everyont during stoody energies	to the motor.		
ocn	Over-current during steady operation	Check for possible shaft lock.		
	(och)	Replace the drive with a larger capacity		
		model.		
	External Fault (EF)			
	1. When multi-function input terminals			
	(MI1–MI4) are set to external fault, the	The "EE" disappears ance the signal source is		
E F	AC motor drive stops output.	cleared and reset		
	2.When changing the communication			
	address 2002H bit0 = 1, the drive stops			
	output.			
	EEPROM write error (cF1.0)			
c 8 10	Internal EEPROM cannot be	Return to the factory for repair.		
	programmed.			

Fault Code	Fault Descriptions	Corrective Actions
c	EEPROM write error (cF1.1) Internal EEPROM cannot be programmed.	Return to the factory for repair.
c F 2.0	EEPROM read error (cF2.0) Internal EEPROM cannot be read.	Press RESET key to reset all parameters to defaults. If this solution does not work, return to the factory for repair.
c F 2. 1	EEPROM read error (cF2.1) Internal EEPROM cannot be read.	Press RESET key to reset all parameters to defaults. If this solution does not work, return to the factory for repair.
c F 3.0	Drive wiring detection fault (cF3.0)	U-phase error, return to the factory for repair.
c F 3 1	Drive wiring detection fault (cF3.1)	V-phase error, return to the factory for repair.
c F 3.2	Drive wiring detection fault (cF3.2)	W-phase error, return to the factory for repair.
c F 3.3	Drive wiring detection fault (cF3.3)	DC bus wiring detection error, return to the factory for repair.
c F <u>3</u> 4	Drive wiring detection fault (cF3.4)	Temperature sensor error, return to the factory for repair.
c ? 8	Auto-acceleration/deceleration failure (cFA)	Check if the drive capacity matches the motor's. Check if the regenerative energy is too high. Check for sudden load changes.
c E	Communication fault (cE)	Check the RJ45 connection between the AC motor drive for loose wires and wiring to the correct pins. Check if the communication format is correct. See the table of explanation of exception codes in Parameter Group 09 Communication Parameters in Chapter 10 for detailed information.
codE	Software protection enabled (codE)	Password is locked.
₽ <i>X</i> {	Phase loss protection (PHL)	Check if the input power is three-phase.
0986	Multi-motor fault protection (oPHL)	Check if the motor wiring is normal.

Fault Codo	Fault Descriptions	Corrective Actions
		Check if the input voltage is within the rated
		AC motor drive input voltage range, and
		check for possible voltage spikes
		If the phase in capacitor or active power
		supply unit acts in the same nower system
		the input voltage may surge abnormally in a
		short time. In this case, install an AC reactor
		Verify the wiring of the control circuit and the
		wiring/grounding of the main circuit to prevent
005	Over-voltage at stop (ovS)	interference
		Check if other fault codes such as cE3 0-
		cF3.2 occur after cycling the power. If yes
		return to the factory for repair
		The ground short circuit current charges the
		capacitor in the main circuit through the
		power Check if there is ground fault on the
		motor cable, wiring box and its internal
		terminals. Troubleshoot the ground fault.
		Check if acceleration is too slow (e.g. when
		lifting load decreases acceleration time). If
		ves, decrease the acceleration time.
		Check if the input voltage is within the rated
		AC motor drive input voltage range, and
		check for possible voltage spikes.
		If the phase-in capacitor or active power
		supply unit acts in the same power system,
		the input voltage may surge abnormally in a
		short time. In this case, install an AC reactor.
		Use over-voltage stall prevention function
	Over veltage during acceleration	(Pr.06.00).
008	Over-voltage during acceleration	Use Auto-acceleration and Auto-deceleration
	(074)	Setting (Pr.01.16)
		When ovA is triggered by too short
		acceleration time, execute the following
		actions: 1. Increase the acceleration time 2.
		Use Pr.06.00 over-voltage stall prevention
		function 3. Use Pr.01.17 S-curve for
		Acceleration Begin Time.
		The ground short circuit current charges the
		capacitor in the main circuit through the
		power. Check if there is ground fault on the
		motor cable, wiring box and its internal
		terminals. Troubleshoot the ground fault.

Fault Code	Fault Descriptions	Corrective Actions
		Verify the wiring of the control circuit and the
		wiring/grounding of the main circuit to prevent
		interference
		Increase the setting values for Pr 01 10 and
		Pr 01 12 (deceleration time)
		Reduce the brake frequency
		Lise S-curve acceleration/deceleration
		Use over-voltage stall prevention function
		(Pr 06 00)
		Lise Auto-acceleration and Auto-deceleration
		Setting (Pr 01 16)
		Adjust the brake level (Pr 08 00)
		Check if the input voltage is within the rated
		AC motor drive input voltage is within the fated
	Over-voltage during deceleration	check for possible voltage spikes
000	(ovd)	If the phase in capacitor or active power
	(040)	supply unit acts in the same power system
		the input voltage may surge apportally in a
		short time. In this case, install an AC reactor
		The ground short circuit current charges the
		capacitor in the main circuit through the
		nower. Check if there is ground fault on the
		motor cable, wiring box and its internal
		terminals. Troubleshoot the ground fault
		Verify the wiring of the control circuit and the
		wiring/grounding of the main circuit to prevent
		interference
		Impulsive change of the load: 1 Reduce the
		load 2. Adjust the brake level (Pr.08.00).
		Use over-voltage stall prevention function
		(Pr.06.00).
		Check if the input voltage is within the rated
		AC motor drive input voltage range, and
		check for possible voltage spikes.
	Over-voltage during constant speed	If the phase-in capacitor or active power
000	(ovn)	supply unit acts in the same power system,
		the input voltage may surge abnormally in a
		short time. In this case, install an AC reactor.
		The ground short circuit current charges the
		capacitor in the main circuit through the
		power. Check if there is ground fault on the
		motor cable, wiring box and its internal
		terminals. Troubleshoot the ground fault.

Fault Code	Fault Descriptions	Corrective Actions
		Verify the wiring of the control circuit and the
		wiring/grounding of the main circuit to prevent
		interference.
	Bolt convoyor drive (VED1) stall	Stall function is enabled for VDF1 of LTC. If
5886	failure (StAL)	materials are jammed and stall conditions are
		met, fault code StAL is triggered.

Reset

After the causes that may trigger fault codes are corrected, execute either of the following actions to clear the trip: 1. Press RESET key on the panel (as shown in the figure below); 2. Set the external terminal to "fault reset command" and set this terminal to be ON; 3. Send the fault reset command through communications. Make sure the RUN command or signal is OFF before executing RESET to prevent damage to the drive or personal injury due to immediate operation after reset.

Digital Keypad Panel

12-3 Maintenance and Inspections

For regular maintenance, first stop operation, then turn off the power, and then take off the outer cover. Even after turning off the power supply, charging voltages remaining in the filter capacitor require some time to discharge. To avoid danger, operation must not start until the charging indicator goes off, and you confirm the voltage with a voltmeter to be below the safety value ($\leq 25 V_{DC}$).

Ambient environment

	Methods and Criterion	Maintenance Period		
Items to Check		Daily	Half	One
			Year	Year
Check the ambient temperature, humidity, and vibration and	Visual inspection and			
check for any dust, gas, oil or water drops.	measurement with equipment	0		
	with standard specification			
Check for any dangerous objects	Visual inspection	0		

Voltage

	Methods and Criterion	Maintenance Period		
Items to Check		Daily	Half	One
			Year	Year
Check that the voltage of main circuit and control circuit are	Measure with multimeter with	\sim		
correct.	standard specifications	0		

Digital keypad display

Items to Check	Methods and Criterion	Maintenance Period		
		Daily	Half	One
			Year	Year
Check that the display is clear for reading.	Visual inspection	0		
Check for any missing characters		0		

Mechanical parts

		Maintenance Period			
Items to Check	Methods and Criterion	Daily	Half	One	
			Year	Year	
Check for any abnormal sound or vibration	Visual and audible inspection		0		
Check for any loose bolts (firm parts)	Securely tighten		0		
Check for any deformed or damaged parts	Visual inspection		0		
Check for any color change caused by overheating	Visual inspection		0		
Check for any dust or dirt	Visual inspection		0		

Main circuit

		Maintenance Period			
Items to Check	Methods and Criterion	Daily	Half	One	
			Year	Year	
Check for any loose or missing bolts	ssing bolts Securely tighten				
Check for machine or insulator deformation, crack, damage or color change due to overheating or aging	Visual inspection		0		
Check for any dust or dirt	Visual inspection		0		

Main circuit terminals and wiring

		Maintenance Period			
Items to Check	Methods and Criterion	Deily	Half	One	
		Daily	Year	Year	
Check the terminal and copper plate for any color change or	Vieual increation		\circ		
deformation caused by overheating	visual inspection		0		
Check for damage to the wiring insulation or color change	Visual inspection		0		

Main circuit terminal block

Items to Check		Maintenance Period			
	Methods and Criterion	Daily	Half	One	
			Year	Year	
Check for any damage	Visual inspection		0		

Main circuit filter capacitor

		Maintenance Period			
Items to Check	Methods and Criterion	Deily	Half	One	
		Dally	Year	Year	
Check for any liquid leaks, color change, crack or buckling	Vieual increation	\circ			
of the exterior cover		0			
Check if the safety valve is not removed. Check if the valve	Vieual increation				
is obviously expanded.		0			
Measure static capacity when required			0		

Main circuit resistor

		Maintenance Period		
Items to Check	Methods and Criterion	Daily	Half	One
			Year	Year
Check for any odors or insulation cracks due to overheating	Visual and audible inspection		0	
Check for any disconnections	Visual inspection		0	
Check for damaged connections Measure with multimeter with)	
	standard specifications		0	

Main circuit transformer and reactor

Items to Check		Maintenance Period			
	Methods and Criterion	Deily	Half	One	
		Daily	Year	Year	
Check for any abnormal vibration or odors	Visual and audible inspection	0			

Main circuit magnetic contactor and relay

Items to Check		Maintenance Period			
	Methods and Criterion	Daily	Half	One	
			Year	Year	
Check for any sound of vibration while running	Audible inspection	0			
Check that the contact works correctly	Visual inspection	0			

Main circuit PCB and connector

		Maintenance Period		
Items to Check	Methods and Criterion	Deily	Half	One
		Dally	Year	Year
Check for any loose screws and connectors	Securely tighten		0	
Check for any odors and color change	Visual inspection		0	
Check for any crack, damage, deformation or corrosion	Visual inspection		0	
Check for any liquid leaks or deformation in capacity	Visual inspection		0	

Cooling system cooling fan

		Maintenance Period			
Items to Check	Methods and Criterion	Duilu	Half	One	
		Dally	Year	Year	
Check for any abnormal sound or vibration	Audible, visual inspection,				
	and turn the fan by hand to				
	see if it rotates smoothly.			0	
	(turn off the power before				
	inspection)				
Check for any loose bolts	Securely tighten			0	
Check for any color change caused by overheating	Visual inspection			0	

Cooling system ventilation channel

Items to Check		Maintenance Period			
	Methods and Criterion	Daily	Half	One	
			Year	Year	
Check for any obstruction or substance adhered in the heat	Audible inspection		\sim		
sink, air intake or air outlet			0		

NOTE: Use a chemically neutral cloth to clean and use a dust cleaner to remove dust when necessary.

[This page intentionally left blank]

Chapter 13 PLC Function Applications

- 13-1 PLC Summary
- 13-2 Notes Before Using PLC
- 13-3 Start-up
- 13-4 Basic Principles of PLC Ladder Diagrams
- 13-5 Various PLC Device Functions
- 13-6 Introduction to the Command Window
- 13-7 Fault Display and Treatment

13-1 PLC Summary

13-1-1 Introduction

The commands provided by the LTC's built-in PLC functions, including the ladder diagram editing tool WPLSoft, as well as the usage of basic commands and applications commands, mainly retain the operating methods of Deltas PLC DVP series.

13-1-2 WPLSoft Ladder Diagram Editing Tool

WPLSoft is a program editing software used under WINDOWS operating system in Delta's DVP Series PLC for VFD-C2000 and VFD-LTC. WPLSoft not only provides functions of PLC program planning and Windows editing (such as cut, paste, copy, multi-window, etc.), but also Chinese/English notes editing function and other useful functions like register editing & setting, file reading & saving, as well as points diagram monitoring and setting, and so on.

Minimum	svstem	requirements	for installing	WPLSoft	software:

Item	System Requirements					
Operating System	Windows 95 / 98 / 2000 / NT / ME / XP / 10					
CPU	Pentium 90 above					
Storage	16MB above (32MB above recommended)					
Drivo	Disk space: 100MB above at a minimum					
Drive	An optical disc drive (for installing WPLSoft)					
Diaplay	Resolution: 800 × 600, 16 colors above. It is recommended to set screen					
Display	width × height to 800 × 600 pixels.					
Mouse	Mouse for general purposes or compatible with Windows					
Printer	Printers with Windows drivers					
RS-485 port	RS-485 port At least one RS-485 port that can be connected with PLC					

13-2 Notes Before Using PLC

 LTC provides two communication ports to upload/download PLC programs, as the figure below shows. Communication format for Channel 1 is ASCII (serial baud rate is at random). Communication format for Channel 2 is 19200, 8, N, 2 (RTU), and communication station address is 1.

🔘 Main circuit terminals 🛛 🔿 Control circuit terminals

The communication station address, serial baud rate, and communication format of SG+ and SGterminals (i.e. Channel 2) for LTC's PLC **can be changed as required**. See below for detailed descriptions.

- (1) D1290 = 0 (default): D1295–1297 are fixed values, D1295 (station address) = 1, D1296 (communication serial baud rate) = 19200 bps, and D1297 (communication format) = 13 (8, N, 2, RTU).
- (2) Change D1290 from 0 to 1, then D1295–1297 can be changed.
- (2.1) Change station address as required
- (2.2) Change serial baud rate from 4.8k, 9.6k, 19.2k, 38.4k, 57.6k to 115.2k. If the setting value of D1296 is larger than 1152, the setting value will be automatically set as the default value 192 (that is, 192 kbps).
- (2.3) Set communication format for D1297 based on the following protocols. If the setting value of D1297 is larger than 17, the setting value will be automatically set as the default value 13 (that is, 8, N, 2 (RTU)).

Settings	1: 7, N, 2 (ASCII)	9: 8, O, 1 (ASCII)
	2: 7, E, 1 (ASCII)	10: 8, E, 2 (ASCII)
	3: 7, O, 1 (ASCII)	11: 8, O, 2 (ASCII)
	4: 7, E, 2 (ASCII)	12: 8, N, 1 (RTU)
	5: 7, O, 2 (ASCII)	13: 8, N, 2 (RTU)
	6: 8, N, 1 (ASCII)	14: 8, E, 1 (RTU)
	7: 8, N, 2 (ASCII)	15: 8, O, 1 (RTU)
	8: 8, E, 1 (ASCII)	16: 8, E, 2 (RTU)
		17: 8, O, 2 (RTU)

- 2. When uploading or downloading programs, PLC program will be disabled.
- 3. When using WPR commands to write in parameters, note that allowable maximum number of

times to change is 10⁹. Otherwise, a memory writing error may occur. The number of times to change depends on the writing value to be changed. If the writing value is not changed, the number of times will not be counted accumulatively; if the writing value is different from the last time, it will be counted as one time.

4. Set D1505=13445, D1503=11111 can restore PLC to default values.

13-3 Start-up

13-3-1 Connect to PC

Wiring: Connect LTC's PLC using USB or RS-485 through USB port to connect to PC.

Method of Running PLC programs:

1. If PLC programs already exist in the PLC board of LTC, power-on the LTC, detach the slide cover, and switch "ASI" dip switch to the right side (as the red frame in the figure below shows). Then, PLC programs can be run.

Chapter 13 PLC Function Applications | LTC

2. PLC programs can also be run by USB port and input terminals SG+, SG-. Connect them to WPLSoft software in PC to upload/download and monitor PLC programs.

Method of Uploading/Downloading PLC programs:

(1) Use USB cable (AM/BM) to connect USB port to PC without supplying three-phase $380-480 V_{AC}$ power to LTC. Two ends of the USB cable (AM/BM) show as the left figure below. Communication format should be ASCII, and serial baud rate is at random, as the right figure below shows.

	Communication Set	ting
	Connection Setup	R\$232
and the second s	Ethernet Card	IP Address: 10.147.69.127
	Intel(R) Dual Ba	nd Wireless-AC 8265
	Communication Set COM <u>P</u> ort Data <u>L</u> ength Parity <u>S</u> top Bits Baud <u>R</u> ate Statio <u>n</u> Address	COM2 ○ ASCII 7 ▼ ○ RTU (8 bits) None ▼ 1 ▼ 9600 ▼ 0 ÷ Default

(2) Use Delta IFD6500 package (one gray flat cable and one black cable included). One end of the black cable is registered jack; the other end are two signal cables (green and yellow). Green cable connects to SG+, and yellow cable connects to SG-, as the left figure below shows. Communication format should be 19200, 8, N, 2, RTU, and station address should be 1, as the right figure below shows. Before uploading/downloading PLC programs, supply LTC with three-phase 380–480 V_{AC} power.

O PLC	Communication Set	tting
DERROR AND	Connection Setup	
	Type	R\$232 💌
	Ethernet Card	IP Address: 10.147.69.127
Contraction of the second seco	Intel(R) Dual Ba	and Wireless-AC 8265
2411 30 X1 X2 X3 X4 X5 X6 X7 X10 EF 10X	Communication Set	tting
	COM Port	COM7 C ASCII
	Data Length	8 • RT <u>U</u> (8 bits)
	Parity	None
	Stop Bits	2 <u>Auto-detect</u>
and the second sec	Baud <u>R</u> ate	19200 -
and the second second	Station Address	1 Default

13-3-2 I/O Device Correspondence

The diagram below shows the connection of contact X and contact Y between VFD1 and VFD2 in the internal PLC board.

NOTE: If external emergency stop signal is connected to EF terminal, pay attention that when external emergency stop occurs, EF fault will be triggered both on VFD1 and VFD2 and ERROR indicator flashes. Fault code EF is displayed on the communication panel PU08 or PU08V. In this case, set Y12 to be ON to reset the EF fault triggered on VFD1 and VFD2.

|--|

No.	1	2	3	4	5	6	7	8	9	10	11	12
Function	24V	X0	X1	X2	X3	X4	X5	X6	X7	X10	EF	DCM
No.	13	14	15	16	17	18	19	20	21	22	23	24
Function	24V	X11	X12	X13	X14	X15	X16	X17	X20	SG+	SG-	DCM

LTC PLC Input/Output Port (Internal Points):

No.	1	2	3	4	5	6	7	8	9	10	11	12	
Function	X21	X22	X23	X24	Y10	Y11	Y12	Y13	Y14		GND	GND	
Pre-	Foult	ault Reserved I	Reserved	Foult	Bus low-	FWD /	REV /	Fault	FWD /	REV /			
defined	Fault		Fault	voltage	STOP	STOP	reset	STOP	STOP				

LTC PLC Output Port (External Points):

No.	1	2	3	4	5	6	7	8	9	10
Function	Y0	Y1	Y3	C0	Y3	Y4	Y5	C1	Y6	C2

LTC PLC Output Port (External Points):

No.	1	2	3	4
Function	Y7-1	C3-1	Y7-2	C3-2

For diagram regarding output port (external points) corresponding to relays, see Section 3-2-1 Wiring Diagram.

13-3-3 WPLSoft Installation

Visit the download center at Delta's website to download and install the software WPLSoft (v2.05 or above):

After finishing installation, WPLSoft program will be created in the specified default sub-directory under "C:\Program Files\Delta Industrial Automation\WPLSoft x.xx".

13-3-4 Program Writing

Step 1. Click on the WPLSoft icon to start the editing software (see Figure 13-3-4-1).

Figure 13-3-4-1 (Left: WPLSoft icon; right: WPLSoft starting page)

Step 2: WPLsoft Editor window appears (see Figure 13-3-4-2). When running WPLSoft for the first time, as there is no existing file, only File (F), Communication (C), View (V), Options (O), and Help (H) are available on the function menu.

🕞 Dvp0 - Delta WPLSoft	-	٥	×
Eile Edit Compiler Comments Search View Communication Options Wizard Window Help			
□ ☞ 團 圖 ◎ ◎ X □ ◎ ● 3 ◎ < < ◎ ● ● ◎ ○ ◎ ● ● ◎ ◇			
🔜 물 레 순 💩 관 🖬 🦉 🖉 및 🖗 🖩 🖩 🖄 🗘 🗢 🗊 🗣 🛠 조 또 조 존 관 국 🎰 수 🔍 통 수			
System Block MachineList G APIs G Floution G S Loop Control G S Transmission C G S Transmission C G S Transmission C G S Data Processing G So Data Processing G So Data Processing G So Data Processing G So Data Instructio G S Communication G S Real Time Caler G So Real Time Caler G So Contact Type L G S Contact Type L G S Specific Bit Cor v Project Communication			
Overwrite 行: 0 0 / 14,000 Steps VFD-LTC (PLC站号设置: 2)			ㅋㅋ×

Figure 13-3-4-2

NOTE:

When starting WPLSoft for the second time, the last editing file will be opened directly and displayed in the editor window. WPLSoft editor window is described as Figure 13-3-4-3.

🔰 Dvp0 - Delta WPLSoft					
<u>File Edit Compiler Comments Se</u>	earch <u>V</u> iew <u>C</u> ommun	ication <u>O</u> ptions Wizard	<u>W</u> indow <u>H</u> elp	Function Menu	
🗋 🚅 📰 🚳 🚳 🗶 🖿	🛍 🥜 🔒 🔍	९ ९ 🕘 🐺 🛙	01 :	● C A]
🔛 🏗 🕸 🗶 🖄 🖽 🗺	/ T 🗊 T 📜	🖩 🗑 🔿 🤤 🛒	S	: 김 김 국 🗃 Q Q 💂 🏝	Toolbar
Relay Type	(8) F6 F7 F8 F	के संव की 12 कि की 36 की	🖶 👬 🍈 🔳	****	
·····································	🔛 Instruction List	Mode			- 0 ×
System Block MachineList MachineList Far Function Constraintsion C Constraintsion C Constraintsi	000009 NG 000010 NG 000011 NG 000012 NG 000013 NG 000014 NG 000015 NG 000016 NG	P P P P P P P P P P P P P P	nand editing	area	
 Basic Instruction Communication 	😤 Ladder Diagra	m Mode			
Additional Instr Additional Instr Market Stream (Second Second Se	4	Ladder dia	agram editin	g area	
Project Communication Overwrite Row: 0,	, Col: 8	0 / 14	,000 Steps		VFD-LTC (PLC Station Address: 2)

Figure 13-3-4-3

Step 3. Click on the D button on the toolbar: New (Ctrl+N) to open a new file, as Figure 13-3-4-4 shows.

😂 Dvp0 - Delta WPLSoft
<u>File Edit Compiler Comments Search View Communication</u> <u>Options Wizard Window Help</u>
🔛 🎉 🖗 🔮 🔝 🧮 🍠 👎 💷 🎈 🦉 🔲 🖉 🔇 🗢 🧛 🖳 🛠 🐍 🏋 등 감 팩 패 🔍 🔍 具 🋬
Relay Type 🛛 背 推 楷 楷 骼 常 好 雨 鳥 育 雅 市 祐 恭 編 結 🍵 🔤 🏝 🔤 🖨 🔷 📾 🖷 👫 🔟 📴 🖿
Figure 13-3-4-4

NOTE:

You can also select New (Ctr+N) under function menu File (F) to open a new file.

Figure 13-3-4-5

Step 4. Select a PLC Model window will then appear (see Figure 13-3-4-6). Set Program Title, File Name, Model Type, VFD Type, and Communication Setting.

elect a PLC N	lodel	
Program Title		
<u>M</u> odel Type	VFD	
Select	VFD-LTC 👻	_
Communicatio	VFD-C2000/CH2000/CT200	0 ^
RS232 (CON	VFD-C200 VFD-CP2000	
-	VFD-MS300	
<u>F</u> ile Name	VFD-MH300 VFD-VHVAC	
Dvp0	VFD-LTC	
	VFD-MP	~
OK	Cancel	

Figure 13-3-4-6

Communication Setting: Set the communication method as required (see Figure 13-3-4-7).

Halp	Communication Setting
	Connection Setup Type R\$232 Ethernet Card IP Address: 10.147.69.127 Intel(R) Dual Band Wireless-AC \$265 Image: Content of the set of th
Select a PLC Model Program Title Model Type VFD Select VFD-LTC Communication Setting RS232 (COM3) Setting File Name Dvp0 QK Cancel	Communication Setting COM3 …
	<u>OK</u> <u>Cancel</u>

Figure 13-3-4-7

Step 5. After settings are finished, click OK to start editing the programs. Methods of editing programs: 1. Instruction List Mode and 2. Ladder Diagram Mode, as Figure 13-3-4-8 shows. Use the method as required.

🞯 Dvp0 - Delta WPLSoft			
<u>File Edit Compiler Comments Se</u>	Search View Communication Options Wizard Window Help		
🗋 🚅 📰 🗃 🕥 💿 🗶 🖿	n n 🥔 n 🔍 🔍 🔍 🐺 🗟 O 💶 ≑ 🗢 3: 🦿		
🔣 🏽 🇯 🗳 🖄 🖼 👹	☞ 두 59 ♀ 📕 🖩 🖻 🗿 🗣 🗣 🐇 🕱 🖫 🖀 🖉 🖓 🔜 🖓 🖓 👫 🦉		
Relay Type	# 18 品では「 11 12 11 11 11 11 11 11 11 11 11 11 11		
	🔛 Instruction List Mode		
System Block Alachine Strengthere Block Alachine	000009 NOP 000010 NOP 000011 NOP 000013 NOP 000016 NOP 000017 NOP 000016 NOP 000017 NOP 000018 NOP 000019 NOP 000010 NOP 000011 NOP 000012 NOP 000013 NOP 000014 NOP 000015 NOP 000016 NOP 000017 NOP 000018 NOP 000019 000010 1		
Overwrite Row: 0.	0. Col: 8 0 / 14.000 Steps VED-LTC (PLC Station Addr	ess: 2)	

Figure 13-3-4-8

NOTE:

In the ladder diagram mode, you can edit programs using buttons on the ladder diagram toolbar (see Figure 13-3-4-9).

Figure 13-3-4-9

Example of Basic Operation

Input a ladder diagram as Figure 13-3-4-10 shows. The following steps show how to use mouse and keypad functions (F1 to F12) to edit programs.

М	1		
\vdash		YO)
	F		٦

😂 Dvp0 - Delta WPLSoft - [Ladder Diagram Mode]		- 0 ×
Eile Edit Compiler Comments Search View Com	nmunication <u>Options</u> Wizard <u>Window</u> <u>H</u> elp	_ & ×
🗋 🖨 🖽 🗃 🎯 🎯 🛛 X 🖿 🛍 🍠 🖙 🍋	Q Q = ₩ B 0 1 = € ⊕ 2 .4	
🔛 🖫 🕼 🔮 🖄 🔀 🗐 🔙 🍠 🗣 🗊 🕈 🦉	: ■ 图 0 🗢 勁 勁 🖌 湍 光 盂 芒 팩 圖 이 이 🖳 즉	
Relay Type	■ ◎ 回 単 目 目 目 目 目 目 目 目 目 目 目 目 目 目 目 目 目 目	
■ ■ ■ ● ● ●		
Overwrite Row: 0, Col: 1	0 / 14,000 Steps VFD-LTC (PLC Station Address: 2)	(at all

Step 2. Click **Normally Open Contact** button or press function key F1. **Input Device Instruction** window appears. Select **Device Name** (e.g. M), **Device Number** (e.g. 10), and type **Comment** (e.g. Auxiliary coil). Then, click **OK** to finish settings, as Figure 13-3-4-12, 13-3-4-13 shows.

💐 Dvp0 - Delta WPLSoft - [Ladder Diagram Mode]
🔀 Eile Edit Compiler Comments Search View Communication Options Wizard Window Help
D 🖨 🖩 🖺 🎯 🞯 X 🗈 🛍 🍠 😩 🔍 🔍 🔍 🐺 🐻 O 💶 🖶 O C 🛷
22 22 14 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24
Relay Type 🔤 🚹 🥴 賞 賞 賞 賞 詩 前 證 市 古 嵩 編 話 🗑 🗰 🏛 🚍 🗇 📾 🖷 🖶 💷 🖿
Imput Device Instruction Imput Relay Imput Rela
Overwrite Row: 0, Col: 1 0 / 14,000 Steps VFD-LTC (PLC Station Address: 2)

Figure 13-3-4-12

Figure 13-3-4-13

Step 3. Click **Context** Step 3. Click **Output Coils** button or press function key F7. **Input Device Instruction** window appears. Select **Device Name** (e.g. Y), **Device Number** (e.g. 0), and type **Comment** (e.g. Output coil). Then, click **OK** to finish settings, as Figure 13-3-4-14, 13-3-4-15 shows.

Figure 13-3-4-14

😂 Dvp0 - Delta WPLSoft - [Ladder Diagram N	/ode]	- 0 ×
Eile Edit Compiler Comments Search M	iew <u>Communication</u> <u>Options</u> Wizard <u>Window</u> <u>H</u> elp	- 8
🗋 🖨 🗄 🗃 🥥 🚳 🕺 🖿 🛍 🍠	읍 🔍 역 역 🖉 🐺 🛛 ଓ 💶 🗣 Ө 문 🧔	
🔡 🎏 🏟 🔮 🖄 🐯 💷 💆 🐬 👎 🤋	9 9 🕱 🖩 🖻 🔿 🗢 🖳 🕏 🛣 및 조 프 프 프 프 🖬 🔍 🔍 👫 슬	
Relay Type 🔤 🎁 🏥 🏥 🏥 🛱 🛱	デ 市 市 市 禄 市 市 帯 部 💩 🔤 🏝 🔤 🗗 🔤 🖷 🔤 🗎 💷	
APIs Comparison	M10 	

Step 4. Press ENTER key, and then an I**nput Instruction** window appears. Type "END" in the field, and then click **OK**, as Figure 13-3-4-16, 13-3-4-17 shows.

Figure 13-3-4-17

Step 5. Click **Ladder Diagram=>Command** button to convert the edited ladder diagram to the commands. After compiling is finished, the number of rungs (steps) appear on the left side of the busbar, as Figure 13-3-4-18 shows.

Figure 13-3-4-18

13-3-5 Program Downloading

After a program was input using WPLSoft, click **Compile** button. After compiling is finished, click Download **S** button to download the programs. WPLSoft downloads the program to the online PLC in the communication format that you specified for the communication settings.

13-3-6 Program Monitoring

After downloading the program, make sure that the PLC is in Run mode. On the **Communications** menu, click **Online Mode** *button*, and then click **Start Ladder Diagram Control**, as the figure below shows. This allows you to monitor and operate the ladder diagram while online.

13-4 Basic Principles of PLC Ladder Diagrams

13-4-1 Schematic Diagram of PLC Ladder Diagram Program Scanning

Repeated implementation

13-4-2 Introduction to Ladder Diagrams

Ladder diagrams comprise a graphic language widely applied in automatic control, and employs common electrical control circuit symbols. After a ladder diagram editor has been used to create a ladder pattern, PLC program designed is completed. The use of a graphic format to control processes is very intuitive, and is readily accepted by personnel who are familiar with electrical control circuit technology. Many of the basic symbols and actions in a ladder diagram comprise commonly seen electrical devices in conventional automatic control power distribution panels, such as buttons, switches, relays, timers, and counters.

Internal PLC devices: The types and quantities of internal PLC devices vary in different brands of products. Although these internal devices use the same names as conventional electrical control circuit elements such as relays, coils, and contacts, a PLC does not actually contain these physical devices, and they instead correspond to basic elements in the PLCs internal memory (bits). For instance, if a bit is 1, this may indicate that a coil is electrified, and if that bit is 0, it will indicate that the coil is not electrified. An N.O. contact (Normal Open, or contact a) can be used to directly read the value of the corresponding bit, and an N.C. contact (Normal Close, or contact b) can be used to obtain the inverse of the bits value. Multiple relays occupy multiple bits, and 8 bits comprise one byte; two bytes comprise one word, and two words comprise a double word. When multiple relays are processing at the same time (such as addition/ subtraction or displacement, etc.), a byte, word, or double word can be used. Furthermore, a PLC contains two types of internal devices: a timer and a counter. It not only has a coil, but can count time and numerical values. Because of this, when it is necessary to process some numerical values, these values are usually in the form of bytes, words, or double words.

The various internal devices in a PLC all account for a certain quantity of storage units in the PLCs storage area. When these devices are used, the content of the corresponding storage area is read in the form of bits, bytes, or words.

Introduction to the basic internal devices in a PLC

Device type	Description of Function
Input Relay	 An input relay constitutes the basic unit of storage in a PLCs internal memory corresponding to an external input point (which serves as a terminal connecting with an external input switch and receiving external input signals). It is driven by external input signals, to which it assigns values of 0 or 1. A program design method cannot change the input relay status, and therefore cannot rewrite the corresponding basic units of an input relay, and WPLSoft cannot be used to perform compulsory On/Off actions. A relays contacts (contacts a and b) can be used an unlimited number of times. An input relay with no input signal must be left idle and cannot be used for some other purpose. Device indicated as: X0, X1, X7, X10, X11, etc. This device is expressed with the symbol "X", and a devices order is indicated with an octal number. Please refer to Section 13-3-2 I/O Device Correspondence for input point
Output Relay	 An output relay constitutes the basic unit of storage in a PLCs internal memory corresponding to an external output point (which connects with an external load). It may be driven by an input relay contact, a contact on another internal device, or its own contacts. It uses one NO contact to connect with external loads or other contacts, and, like input contacts, can use the contact an unlimited number of times. An output relay with no input signal will be idle, but may be used an internal relay if needed. Device indicated as: Y0, Y1,Y7, Y10, Y11,etc. This device is expressed with the symbol "Y", and a devices order is indicated with an octal number. Please refer to Section 13-3-2 I/O Device Correspondence for output point
Internal Relay	 Internal relays have no direct connection with the outside. These relays are auxiliary relays inside a PLC. Their function is the same as that of an auxiliary (central) relay in an electrical control circuit: Each auxiliary relay corresponding to a basic unit of internal storage; they can be driven by input relay contacts, output relay contacts, and the contacts of other internal devices. An internal auxiliary relays contact can also be used an unlimited number of times. Internal relays have no outputs to outside, and must output via an output point. Device indicated as: M0, M1 to M799, etc. This device is expressed as the symbol "M", and its order is expressed as a decimal number.
Counter	 A counter is used to perform counting operations. A count setting value (such as the number of pulses to be counted) must be assigned when a counter is used. A counter contains a coil, contact, and a counting storage device. When the coil goes from Off to On, this indicates that the counter has an input pulse, and one is added to its count. There are 16 bits that can be employed by the user. Device indicated as: C0, C1 to C79, etc. This device is expressed as the symbol "C", and its order is expressed as a decimal number.
Timer	A timer is used to complete control of timing. The timer contains a coil, contact, and a time value register. When the coil is electrified, if the preset time is

Device type	Description of Function
	reached, the contact will be actuated (contact a will close, contact b will open), and the timers fixed value will be given by the set value. Timer has a regulated clock cycle (timing units: 100 ms). As soon as power to the coil is cut off, the contact will no longer be actuated (contact a will open, contact b will close), and the original timing value will return to zero.
	 Device indicated as: T0, T1 to T159, etc. The device is expressed as the symbol "T", and its order is expressed as a decimal number.
Data register	When a PLC is used to perform various types of sequence control and set time value and count value control, it most commonly performs data processing and numerical operations, and data registers are used exclusively for storage of data and various parameters. Each data register contains 16 bits of binary data, which means that it can store one word. Two data registers with adjacent numbers can be used to process double words.
	 Device indicated as: D0, D1 to D399, etc. The device is expressed as the symbol "D", and its order is expressed as a decimal number.

Ladder diagram images and their explanation

Ladder Diagram Structures	Explanation of Commands	Command	Using Device
	NO switch, contact a	LD	X, Y, M, T, C
ГИ	NC switch, contact b	LDI	X, Y, M, T, C
	Series NO	AND	X, Y, M, T, C
	Series NC	ANI	X, Y, M, T, C
	Parallel NO	OR	X, Y, M, T, C
	Parallel NC	ORI	X, Y, M, T, C
	Positive edge-triggered switch	LDP	X, Y, M, T, C
	Negative edge-triggered switch	LDF	X, Y, M, T, C
	Positive edge-triggered series	ANDP	X, Y, M, T, C
	Negative edge-triggered series	ANDF	X, Y, M, T, C
	Positive edge-triggered parallel	ORP	X, Y, M, T, C
	Negative edge-triggered parallel	ORF	X, Y, M, T, C

Ladder Diagram Structures	Explanation of Commands	Command	Using Device
	Block series	ANB	N/A
	Block parallel	ORB	N/A
	Multiple outputs	MPS MRD MPP	N/A
0	Coil driven output commands	OUT	Y, M
	Some basic commands, applications commands	Some basic commands Applications commands	
	Inverted logic	INV	N/A

13-4-3 Overview of PLC Ladder Diagram Editing

The program editing method begins from the left busbar and proceeds to the right busbar (the right busbar is omitted when editing using WPLSoft). Continue to the next row after completing each row; there is a maximum of 11 contacts on each row. If this is not sufficient, a continuous line will be generated to indicate the continued connection and more devices can be added. A continuous series of numbers will be generated automatically and identical input points can be used repeatedly. See figure below:

The ladder diagram programming method involves scanning from the upper left corner to the lower right corner. The coils and applications command-computing box are handled in the output, and the ladder diagram is placed on the farthest right. Taking the figure below as an example, we can gradually analyze the procedural sequence of the ladder diagram. The number in the upper right corner gives the sequential order.

Explanation of command sequence

Explanation of basic structure of ladder diagrams

1. LD (LDI) command: An LD or LDI command is given at the start of a block.

LDP and LDF have this command structure, but there are differences in their action state. LDP, LDF only act at the rising or falling edge of a conducting contact. (see figure below):

2. **AND (ANI) command:** A series configuration in which a single device is connected with one device or a block.

ANDP, ANDF also have structures like this, but their action occurs at the rising and falling edge.

3. **OR (ORI) command:** A single device is connected with one device or a block.

ORP, ORF also have identical structures, but their action occurs at the rising and falling edge.

4. **ANB command:** A configuration in which one block is in series with one device or block.

5. **ORB command:** A configuration in which one block is in parallel with one device or block.

In the case of ANB and ORB operations, if a number of blocks are connected, they should be combined to form a block or network from the top down or from left to right.

- 6. MPS, MRD, MPP commands: Branching point memory for multiple outputs, enabling multiple, different outputs. The MPS command begins at a branching point, where the so-called branching point refers to the intersection of horizontal and vertical lines. We have to rely on the contact status along a single vertical line to determine whether the next contact can give a memory command. While each contact is basically able to give memory commands, in view of convenience and the PLCs capacity restrictions, this can be omitted from some places when converting a ladder diagram. The structure of the ladder diagram can be used to judge what kinds of contact memory commands are used.
 - MPS can be distinguished by use of the "_T" symbol; this command can be used consecutively for up to 8 times. The MRD command is read from branching point memory; because logic states along any one vertical line must be the same, in order to continue analysis of other ladder diagrams, the original contact status must be read.
 - MRD can be distinguished by use of the " +" symbol. The MPP command is read from the starting state of the uppermost branching point, and it is read from the stack (pop); because it is the final command along a vertical line, it indicates that the state of the vertical line can be concluded.
 - MPP can be distinguished by use of the "L" symbol. Although there should basically be no errors when using the foregoing analytical approach, the compiling program may sometimes omit identical state output, as shown in the following figure:

13-4-4 Commonly Used Basic Program Design Examples

Start, stop, and protection

Some applications may require a brief close or brief break using the buttons to start and stop equipment. A protective circuit must therefore be designed to maintain continued operation in these situations; this protective circuit may employ one of the following methods:

Example 1: Priority stop protective circuit

When the start NO contact X1=On, and the stop NC contact X2=Off, Y1=On; if X2=On at this time, coil Y1 will no longer be electrified, and this is therefore referred to as priority stop.

Example 2: Priority start protective circuit

When start NO contact X1=On, and the stop NC contact X2=Off, Y1=On, and coil Y1 will be electrified and protected. At this time, if X2=On, coil Y1 will still protect the contact and continue to be electrified, and this is therefore priority start.

Example 3: Setting (SET) and reset (RST) command protective circuit

The following figure shows a protective circuit composed of RST and SET commands. Priority stop occurs when the RST command is placed after the SET command. Because the PLC executes programs from the top down, at the end of the program, the state of Y1 will indicate whether coil Y1 is electrified. When X1 and X2 are both actuated, Y1 will lose power, and this is therefore priority stop.

Priority start occurs when the SET command is placed after the RST command. When X1 and X2 are both actuated, Y1 will be electrified, and this is therefore priority start.

Commonly used control circuits

Example 4: Conditional control

X1, X3 are respectively start/ stop Y1, and X2 & X4 are respectively start/ stop Y2; all have protective circuits. Because Y1s NO contact is in series with Y2s circuit, it becomes an AND condition for the actuation of Y2. The action of Y1 is therefore a condition for the actuated before Y2 can be actuated.

Example 5: Interlocking control

The figure below shows an interlocking control circuit. Depending on which of the start contacts X1, X2 is valid first, the corresponding output Y1 or Y2 will be actuated, and when one is actuated, the other will not be actuated. This implies that Y1 and Y2 cannot be actuated at the same time (interlocking effect). Even if both X1 and X2 are valid at the same time, because the ladder diagram program is scanned from the top down, it is impossible for Y1 and Y2 to be actuated at same time. This ladder diagram assigns priority only to Y1.

Example 6: Sequence control

If the NC contact of Y2 in the interlocking control configuration of example 5 is put in series with the Y1 circuit, so that it is an AND condition for actuation of Y1 (see figure below), not only is Y1 a condition for the actuation of Y2 in this circuit, the actuation of Y2 will also stop the actuation of Y1. This configuration confirms the actuation order of Y1 and Y2.

Example 7: Oscillating circuit

Oscillating circuit with a period of $\Delta T + \Delta T$

The figure below shows a very simple ladder diagram. When starting to scan the Y1 NC contact, because the Y1 coil has lost power, the Y1 NC contact will be closed. When the Y1 coil is then scanned, it will be electrified, and the output will be 1. When the Y1 NC contact is scanned in the scanning cycle, because Y1 coil is electrified, the Y1 NC contact will be opened, the Y1 coil will then lose power, and the output will be 0. Following repeated scanning, the output of Y1 coil will have an oscillating waveform with a period of ΔT (On) + ΔT (Off).

Oscillating circuit with a period of $nT+\Delta T$

The program of the ladder diagram shown below uses timer T0 to control coil Y1s electri fied time. After Y1 is electrified, it causes timer T0 to close during the next scanning cycle, which will cause the output from Y1 to have the oscillating waveform shown in the figure below. Here n is the timers decimal setting value, and T is the clock cycle of the timer.

Example 8: Flashing circuit

The following figure shows an oscillating circuit of a type commonly used to cause an indicator light to flash or a buzzer to buzz. It uses two timers to control the On and Off time of Y1 coil. Here n1, n2 are the timing set values of T1 and T2, and T is the clock cycle of the timer.

Example 9: Triggering circuit

In the figure below, a command consisting of the differential of the rising edge of X0 causes coil M0 to generate a single pulse for ΔT (length of one scanning cycle), and coil Y1 is electrified during this scanning cycle. Coil M0 loses power during the next scanning cycle, and NC contact M0 and NC contact Y1 are both closed. This causes coil Y1 to stay in an electrified state until there is another rising edge in input X0, which again causes the electrification of coil M0 and the start of another scanning cycle, while also causing coil Y1 to lose power, etc. The sequence of these actions can be seen in the figure below. This type of circuit is commonly used to enable one input to perform two actions in alternation. It can be seen from the time sequence in the figure below that when input X0 is a square wave signal with a period of T, the output of coil Y1 will be a square wave signal with a period of 2T.

Example 10: Delay circuit

When input X0 is On, because the corresponding NC contact will be Off, the timer T10 will be in no power status, and output coil Y1 will be electrified. T10 will receive power and begin timing only after input X0 is Off, and output coil Y1 will be delayed for 100 sec. (K1000*0.1 sec. =100 sec.) before losing power; please refer to the sequence of actions in the figure below.

TB:0.1 sec

Example 11: The open / close delay circuit is composed of two timers; output Y4 will have a delay whether input X0 is On or Off.

Example 12: Extended timing circuit

In the circuit in the figure on the left, the total delay time from the moment input X0 closes to the time output Y1 is electrified is (n1+n2) * T, where T is the clock cycle. Timers: T11, T12; clock cycle: T.

	13-5	Various	PLC	Device	Functions
--	------	---------	-----	--------	------------------

Item	Specifications	Notes
Control Mode	Alternating back-and-forth scanning method	
Inputs/Outputs Control Mode	Cyclic refresh mode	
Execution speed	Basic commands (several µs)	Application commands (1–dozens of µs)
Programming Language	Commands and ladder diagrams	
Program Capacity	14000 steps	
Inputs/Outputs Points	Digital inputs (X): 17 + 4 = 21 Digital outputs (Y): 8 + 5 = 13	X: 17 points for user-defined, and 4 for internal pre-defined Y: 8 points for user-defined, and 5 for internal pre-defined

Туре	Device		Item	Range		Function		
	Х	External inp	ut relay	X0–X20, 17 points, octal		Corresponds to external input points		
	х	Internal input relay		X21–X24, 4 points, octal	Total	Corresponds to internal input points		
	Y	External out	put relay	Y0–Y7, 8 points, octal	34 points	Corresponds to external output points		
	Y	Internal outp	out relay	Y10–Y14, 5 points, octal		Corresponds to internal output points		
		(General purpose	M0–M999, 1000 points	T . ()	Contacts can be used as		
Relay (bit)	М	relay	Special purpose	M1000–M1279, 280 points	1280 points	ON/OFF switch in the program		
	Т	Timer [,]	100 ms timer	T0–T159, 160 points	Total 160 points	Timer indicated by TMR instruction. If timing reaches its target, the T contact of the same number will be ON.		
	С	Counter (16-bit counting up (general purpose)	C0–C79, 80 points	Total 80 points	Counter indicated by CNT (DCNT) instruction. If counting reaches its target, the C contact of the same number will be ON.		
	Т	Current valu	e of timer	T0–T159, 160 points		When the timing reaches the target, the contact of the timer will be ON.		
Register word data (2 byte)	С	Current value of counter		C0–C79, 16-bit counter, 80 points		When the counting reaches the target, the contact of the counter will be ON.		
	D	D Data register	Latched	D0–D999, 1000 points	Total	Memory area for data		
			Special purpose	D1000–D1619 · 620 points	1620 points	storage		
	ĸ	Docimal	Single byte	Available setting range:	K-32,768 to	K32,767		
Constant	r۸	Decimal	Double byte	Available setting range: K-2,147,483,648 to K2,147,483,647				
Constant	н	Hexadecim	Single byte	Available setting range:	H0000 to HF	FFF		
	11		Double byte	Available setting range: H00000000 to HFFFFFFFF				
Serial communication port (program write/read) RS-485 USB Port								

13-5-1 Introduction to Device Functions

Input / output contact functions

Input contact X functions: Input contact X is connected with an input device, and reads input signals entering the PLC. The number of times that contact a or b of input contact X is used in the program is not subject to restrictions. The On/ Off state of input contact X will change as the input device switches On and Off; a peripheral device (WPLSoft) cannot be used to force contact X On or Off.

Output contact Y functions

The job of output contact Y is to send an On/Off signal to drive the load connected with output contact Y. Output contacts consist of two types: relays and transistors. While number of times that contact a or b of each output contact Y is used in the program is not subject to restrictions, it is recommended that the number of output coil Y be used only once in a program, otherwise the right to determine the output state when the PLC performs program scanning will be assigned to the programs final output Y circuit.

The output of Y0 will be decided by circuit ${\ensuremath{ 2 \ }}$, i.e. decided by ON/OFF of X10.

Numerical value, constant [K]/ [H]

Constant	Single-byte	K	Decimal	K-32,768–K32,767
	Double-byte			K-2,147,483,648–K2,147,483,647
	Single-byte	Н	Hexadecimal	H0000–HFFFF
	Double-byte			H0000000-HFFFFFF

The PLC can use five types of numerical values to implement calculations based on its control tasks; the following is an explanation of the missions and functions of different numerical values.

Binary Number, BIN

The PLCs numerical operations and memory employ binary numbers. Binary nibbles and relevant terms are explained as follows:

bit	Bits are the fundamental units of binary values, and have a state of either 1 or 0
Nibblo	Comprised of a series of 4 bits (such as b3–b0); can be used to express a one-
NIDDIe	nibble decimal number 0–9 or hexadecimal number: 0–F.
Duto	Comprised of a series of two nibbles (i.e. 8 bits, b7–b0); can express a
Byte	hexadecimal number: 00–FF.
\M/ord	Comprised of a series of two bytes (i.e. 16 bits, b15–b0); can express a
vvord	hexadecimal number with four nibbles: 0000–FFFF.
Double Word	Comprised of a series of two words (i.e. 32 bits, b31–b0); can express a
	hexadecimal number with eight nibbles: 00000000–FFFFFFFF

Relationship between bits, digits, nibbles, words, and double words in a binary system (see figure below):

Octal Number, OCT

The external input and output terminals of a DVP-PLC are numbered using octal numbers Example: External input: X0–X7, X10–X17 (Device number table); External output: Y0–Y7, Y10–Y17 (Device number table)

Decimal Number, DEC

Decimal numbers are used for the following purposes in a PLC system:

- The setting values of timer T or counter C, such as TMR C0 K50. (K constant)
- The numbers of devices including M, T, C, or D, such as M10 or T30. (device number)
- Used as an operand in an application command, such as MOV K123 D0. (K constant)

Binary Code Decimal, BCD

Uses one nibble or 4 bits to express the data in a decimal number; a series of 16 bits can therefore express a decimal number with 4 nibbles. Chiefly used to read the input value of a fingerwheel numerical switch input or output a numerical value to a seven-segment display drive.

Hexadecimal Number, HEX

Applications of hexadecimal numbers in a PLC system: Used as operands in application commands, such as MOV H1A2B D0. (H constant)

Constant K

Decimal numbers are usually prefixed with a "K" in a PLC system, such as K100. This indicates that it is a decimal number with a numerical value of 100.

Example: K can be combined with bit device X, Y, M, or S to produce data in the form of a nibble, byte, word, or double word, such as in the case of K2Y10 or K4M100. Here K1 represents a 4-bit combination, and K2–K4 variously represent 8, 12, and 16-bit combinations.

Constant H

Hexadecimal numbers are usually prefixed with the letter "H" in a PLC system, such as in the case of H100, which indicates a hexadecimal number with a numerical value of 100.

Functions of auxiliary relays

Like an output relay Y, an auxiliary relay M has an output coil and contacts a and b, and the number of times they can be used in a program is unrestricted. Users can use an auxiliary relay M to configure the control circuit, but cannot use it to directly drive an external load. Auxiliary relays have the following two types of characteristics:

- Ordinary auxiliary relays: Ordinary auxiliary relays will all revert to the Off state if a power outage occurs while the PLC is running, and will remain in the Off state if power is again turned down.
- Special purpose auxiliary relays: Each special purpose auxiliary relay has its own specific use. Do not use any undefined special purpose auxiliary relays.

Timer functions

Timers take 100 ms as their timing units. When the timing method is an upper time limit, when the current timer value = set value, power will be sent to the output coil. Timer setting values consist of decimal K values, and the data register D can also serve as a setting value.

Actual timer setting time = timing units * set value

Counter features

Item	16-bit counter
Туре	General Type
CT Direction:	Score
Setting	0–32,767
Designation of set value	Constant K or data register D
Change in current value	When the count reaches the set value, there is no longer a count
Output contact	When the count reaches the set value, the contact comes On and stays On
Bosot	The current value reverts to 0 when an RST command is executed, and the
Reset	contact reverts to Off
Contact actuation	All are actuated after the end of scanning

Counter functions

When a counters counting pulse input signal goes $Off \rightarrow On$, if the counters current value is equal to the set value, the output coil will come On. The setting value will be a decimal K values, and the data register D can also serve as a setting value.

16-bit counter C0–C79:

- 16-bit counter setting range: K0–K32,767. (when K0 and K1 are identical, the output contact will immediately be On during the first count.)
- The current counter value will be cleared from an ordinary counter when power is shut off to the PLC.
- If the MOV command or WPLSoft is used to transmit a value greater than the set value to the C0 current value register, when the next X1 goes from Off→On, the C0 counter contact will change to On, and the current value will change to the set value.
- A counters setting value may be directly set using a con stant K or indirectly set using the value in register D (not including special data registers D1000–D1199 or D2000–D2799).
- If the set value employs a constant K, it may only be a positive number; the set value may be either a positive or a negative number if the value in data register D is used. The current counter value will change from 32,767 to -32,768 as the count continues to accumulate.

- When X0=On and the RST command is executed, the current value of C0 will revert to 0, and the output contact will revert to Off.
- When X1 changes from Off→On, the current value of the counter will execute an increase (add one).
- When the count of counter C0 reaches 4.
 the set value K5, the contact C0 will come
 On, and the current value of C0= set
 value =K5. Afterwards, signal C0 triggered
 by X1 cannot be received, and the current
 value of C0 will remain K5.

13-5-2 Introduction to Special Relay Functions (Special M)

R/W items: RO: read only function; RW: read and write function

Special M	Description of Function	R/W *
M1000	Operates monitor NO contact (contact a). NO while RUN, contact a. This contact is On while in the RUN state.	RO
M1001	Operates monitor NC contact (contact b). NC while RUN, contact b. This contact is Off while in the RUN state.	RO
M1002	Initiates a forward (the instant RUN is On) pulse. Initial pulse, contact a. Produces a forward pulse the moment RUN begins; its width = scan cycle	RO
M1003	Initiates a reverse (the instant RUN is Off) pulse. Initial pulse, contact a. Produces a reverse pulse the moment RUN ends; the pulse width = scan cycle	RO
M1004	Reserved	RO
M1005	Drive malfunction instructions	RO
M1006	Converter has no output (1 = no output, 0 = output)	RO
M1007	Drive direction FWD(0)/REV(1)	RO
M1008		
_ M1010		
M1011	10 ms clock pulse, 5ms On / 5ms Off	RO
M1012	100 ms clock pulse, 50ms On / 50ms Off	RÖ
M1013	1 sec. clock pulse, 0.5s On / 0.5s Off	RO
M1014	1 min. clock pulse, 30s On / 30s Off	RO
M1015	Frequency attained (when used together with M1025)	RO
M1016	Parameter read/write error	RO
M1017	Parameter write successful	RO
M1018		
M1019		
M1020	Zero flag	RO
M1020	Borrow flag	RO
M1022	Carry flag	RO
M1022	Divisor is 0	RO
M1020		
M1021	Target drive frequency = set frequency (ON) Target drive frequency =0 (OEE)	RW
M1026	Drive operating direction EWD(OEE) / REV(ON)	RW
M1020	Drive Reset	RW
M1027		
M1020		
M1020		
M1031	Compulsory setting of the current PID integral value equal to D1019 (0 change, 1 valid)	RW
M1032	Compulsory definition of EREQ command after PID control	RW
M1033		
M1034	Initiates CANopen real-time control	RW
M1035		RW
M1036	Innates internal communications control	RW
M1030		
M1038	MI8 count begins	=- R\//
M1030	Reset MI8 count value	R\//
M1040	Excitation (Servo On)	R\//
M10/1		
M1047	Quick stop	=- R\//
M1042		
M1044	Pause (Halt)	RW/
		1 1 1 1

Special M	Description of Function	R/W *
M1045		
_		
M1047		
M1048	Move to new position	RW
M1049		
M1050	Absolute position / relative position (0: relative/1: absolute)	RW
M1051		
M1052	Lock frequency (lock, frequency locked at the current operating frequency)	RW
M1053		
M1054	Compulsory reset of absolute position	RW
M1055	Search Origin	RW
M1056	Excitation ready (Servo On Ready)	RO
M1057		
M1058	On Quick Stopping	RO
M1059	CANopen Master setting complete	RO
M1060	CANopen Currently initializing slave station	RO
M1061	CANopen Slave station initialization failure	RO
M1062		
M1063	Torque attained	RO
M1064	Target reached	RO
M1065	Read/write CANopen data time out	RO
M1066	Read/write CANopen data complete	RO
M1067	Read/write CANopen data successful	RO
M1068	Calendar calculation error	RO
M1069		
M1070	Return home complete	RO
M1071	Homing error	RO
M1072		
-		
M1075		
M1076	Calendar time error or refresh time out	RO
M1077	485 Read/write complete	RO
M1078	485 Read-write error	RO
M1079	485 Communications time out	RO
M1090	OFF (Refer to Pr.00-29 for more information)	RO
M1091	HAND (Refer to Pr.00-29 for more information)	RO
M1092	AUTO (Refer to Pr.00-29 for more information)	RO
M1100	LOCAL (Refer to Pr.00-29 for more information)	RO
M1101	REMOTE (Refer to Pr.00-29 for more information)	RO
M1168	SMOV BCD and BIN mode switch	RW
M1260	PLC PID1 Enable	RW
M1262	PLC PID1 integral positive value limit	RW
M1270	PLC PID2 Enable	RW
M1272	PLC PID2 integral positive value limit	RW

13-5-3 Introduction to Special Register Functions (Special D)

Special D	Description of Function	R/W *
D1000		
D1001	Device system program version	RO
D1002	Program capacity	RO
D1003	Total program memory content	RO
D1004		
_		
D1009		
D1010	Current scan time (units: 0.1 ms)	RO
D1011	Minimum scan time (units: 0.1 ms)	RO
D1012	Maximum scan time (units: 0.1 ms)	RO
D1013		
_		
D1017		
D1018	Current integral value	RO
D1019	Compulsory setting of PID I integral	RW
D1020	Output frequency (0.000–600.00Hz)	RO
D1021	Output current (####.#A)	RO
	AI AO DI DO Expansion card number	
	0: No expansion card	
D1022	4: AC input card (6 in) (EMC-D611A)	RO
D1022	5: Digital I/O Card (4 in 2 out) (EMC-D42A)	NO
	6: Relay card (6 out) (EMC-R6AA)	
	11: Analog I/O Card (2 in 2 out) (EMC-A22A)	
	Communication expansion card number	
	0: No expansion card	
D 4000	1: DeviceNet Slave (CMC-DN01)	50
D1023	2: Protidus-DP Slave (CMC-PDU1)	RO
	3: CANOPEN Slave (EMC-COPUT)	
	5. Elliennel/IP Slave (CINC-EIPUT)	
D1024	12. PROFINET Slave (CIVIC-PNUT)	
D1024		
D1020	PID calculation frequency command (frequency command after PID	
D1027	calculation)	RO
D1028	AVI value (0.00–100.00%)	RO
D1029	ACI value (0.0–100.00%)	RO
D1030	AUI value (-100 0–100 00%)	RO
D1031	C series: extension card Al10 $(0.0-100.0\%)$	RO
D1032	C series: extension card AI11 (0.0–100.0%)	RO
D1033		
_		
D1035		
D1036	Servo error bit	RO
D1037	Drive output frequency	RO
D1038	DCBUS voltage	RO
D1039	Output voltage	RO
D1040	Analog output value AFM1 (-100.00–100.00%)	RW
D1041	C series: extension card AO10 (0.0–100.0%)	RW
D1042	C series: extension card AO11 (0.0–100.0%)	RW
D1043	Can be user-defined (will be displayed on panel when Pr. 00-04 is set as 28;	RW/
	display method is C xxx)	1
D1044		-
D1045	Analog output value AFM2 (-100.00–100.00%)	RW

Special D	Description of Function	R/W *
D1046		
_		
D1049		
	Actual Operation Mode	
	0: Speed	
D1050	1: Position	RO
	2: Torque	
	3: Homing Origin	
D1051	Encoder Pulses L	RO
D1052	Encoder Pulses H	RO
D1053	Actual torque	RO
D1054	MI8 current calculated count value (Low Word)	RO
D1055	MI8 current calculated count value (High Word)	RO
D1056	Rotational speed corresponding to MI8	RO
D1057	MI8s rotational speed ratio	RW
D1058	MI8 refresh rate (ms) corresponding to rotational speed	RW
D1059	Number of nibbles of rotational speed corresponding to MI8 (0–3)	RW
	Operation Mode setting	
54000	0: Speed	
D1060	1: Position	RW
	2: lorque	
D1061	3. Homing Origin	
D1061	485 COMT communications time out time (ms)	
D1062	Veer (Western selender) (dianlay range 2000, 2000) (must use KDC CC01)	
D1063	Year (Western Calendar) (display range 2000–2099) (must use KPC-CC01)	RU
D1064	Week (display range 1–7) (must use KPC-CC01)	RU
D1065	Dev (display range 1 - 12) (must use KPC-CC01)	
D1000	Hour (display range 0, 23) (must use KPC-CC01)	
D1007	$\frac{11001}{(015)103} \frac{11000}{1000} $	PO
D1000	Second (display range 0, 50) (must use KPC CC01)	PO
D1009	Target frequency	PO
D1100	Target frequency (must be operating)	RO
D1102	Reference frequency	RO
D1102	Target I	RO
D1104	Target H	RO
D1105		RO
D1106		
D1107	π(Pi) Low word	RO
D1108	π (Pi) High word	RO
D1109	Random number	RO
	Internal node communications number (set number of slave stations to be	
D1110	controlled)	RW
D1111	Actual position (Low word)	RO
D1112	Actual position (High word)	RO
D1113		RO
D1114		
D1115	Internal node synchronizing cycle (ms)	RO
D1116	Internal node error (bit0 = Node 0, bit1 = Node 1,bit7 = Node 7)	RO
D1117	Internal node online correspondence (bit0 = Node 0, bit1 = Node 1,bit7 = Node 7)	RO
D1118		
D1110		
	Internal node 0 control command	
	Internal node 0 reference command I	
		17.00

Special D	Description of Function	R/W *
D1123	Internal node 0 reference command H	RW
D1124		
D1125		
D1126	Internal node 0 status	RO
D1127	Internal node 0 reference status L	RO
D1128	Internal node 0 reference status H	RO
D1129		
D1130	Internal node 1 control command	RW
D1131	Internal node 1 mode	RW
D1132	Internal node 1 reference command L	RW
D1133	Internal node 1 reference command H	RW
D1134		
D1135		
D1136	Internal node 1 status	RO
D1137	Internal node 1 reference status L	RO
D1138	Internal node 1 reference status H	RO
D1139		
D1140	Internal node 2 control command	RW
D1141	Internal node 2 mode	RW
D1142	Internal node 2 reference command L	RW
D1143	Internal node 2 reference command H	RW
D1144		
D1145		
D1146	Internal node 2 status	RO
D1147	Internal node 2 reference status L	RO
D1148	Internal node 2 reference status H	RO
D1149		
D1150	Internal node 3 control command	RW
D1151	Internal node 3 mode	RW
D1152	Internal node 3 reference command L	RW
D1153	Internal node 3 reference command H	RW
D1154		
D1155		
D1156	Internal node 3 status	RO
D1157	Internal node 3 reference status L	RO
D1158	Internal node 3 reference status H	RO
D1159		
D1160	Internal node 4 control command	RW
D1161	Internal node 4 mode	RW
D1162	Internal node 4 reference command L	RW
D1163	Internal node 4 reference command H	RW
D1164		
D1165		
D1166	Internal node 4 status	RO
D1167	Internal node 4 reference status L	RO
D1168	Internal node 4 reference status H	RO
D1169		
D1170	Internal node 5 control command	RW
D1171	Internal node 5 mode	
D11/2	Internal node 5 reference command L	
D11/3	Internal node 5 reference command H	
D11/4		RW
D1175		
D1176	Internal node 5 status	
D1177	Internal node 5 reference status L	RO

Special D	Description of Function	R/W *
D1178	Internal node 5 reference status H	RO
D1179		
D1180	Internal node 6 control command	RW
D1181	Internal node 6 mode	RW
D1182	Internal node 6 reference command L	RW
D1183	Internal node 6 reference command H	RW
D1184		
D1185		
D1186	Internal node 6 status	RO
D1187	Internal node 6 reference status L	RO
D1188	Internal node 6 reference status H	RO
D1189		
D1190	Internal node 7 control command	RW
D1191	Internal node 7 mode	RW
D1192	Internal node 7 reference command L	RW
D1193	Internal node 7 reference command H	RW
D1194		
D1195		
D1196	Internal node 7 status	RO
D1197	Internal node 7 reference status L	RO
D1198	Internal node 7 reference status H	RO
D1199		

Special D	Description of Function	Default	R/W *
D1200	PID 1 Mode:	0	RW
	0: Basic mode	-	
	PID 1 Target selection:		
D 4004	0: Refer to D1202	2	D 14/
D1201		0	RW
D1000	3: AUI	5000	
D1202	PID 1 Target value (0.00%–100.00%)	5000	RW
	PID T Feedback selection:		
D1202		1	
D1203		I	
	3. 411		
D1204	PID 1 Feedback value (0.00%–100.00%)	0	RW
D1204	PID 1 P value (decimal 2 points)	10	RW
D1206	PID 1 value (decimal 2 points)	1000	RW
D1207	PID 1 D value (decimal 2 points)	0	RW
D1209	PID 1 Max. limit	10000	RW
D1215	PID 1 Calculation (decimal 2 points)	0	RO
D 4000	PID2 Mode:		
D1220	0: Basic mode	0	RW
	PID 2 Target selection:		
	0: Refer to D1202		
D1221	1: AVI	0	RW
	2: ACI		
	3: AUI		
D1222	PID 2 Target value (0.00%–100.00%)	5000	RW
	PID 2 Feedback selection:		
D1223	0: Refer to D1204	1	RW
0,220	1: AVI	1	1.1.4
	2: ACI		

Special D	Description of Function	Default	R/W *
	3: AUI		
D1224	PID 2 Feedback value (0.00%–100.00%)	0	RW
D1225	PID 2 P value (decimal 2 points)	10	RW
D1226	PID 2 I value (decimal 2 points)	1000	RW
D1227	PID 2 D value (decimal 2 points)	0	RW
D1229	PID 2 Max. limit	10000	RW
D1235	PID 2 Calculation (decimal 2 points)	0	RO

The following is CANopen Masters special D (Allow writing only when PLC is in STOP state) n = 0-7

Special D	Description of Function	PDO Map	Power off Memory	Power off Default /lemory			
D1070	Channel opened by CANopen initialization (bit0=Machine code0)	NO	NO	0	R		
D1071	Error channel occurring in CANopen initialization process (bit0=Machine code0)	NO	NO	0	R		
D1072	Reserved	-	-		-		
D1073	CANopen break channel (bit0=Machine code0)	NO	NO		R		
D1074	Error code of master error 0: No error 1: Slave station setting error 2: Synchronizing cycle setting error (too small)	NO	NO	0	R		
D1075	Reserved	-	-		-		
D1076	SDO error message (main index value)	NO	NO		R		
D1077	SDO error message (secondary index value)	NO	NO		R		
D1078	SDO error message (error code)	NO	NO		R		
D1079	SDO error message (error code)	NO	NO		R		
D1080	Reserved	-	-		-		
D1081 _ D1086	Reserved	-	-		-		
D1087							
_ D1089	Reserved	-	-		-		
D1090	Synchronizing cycle setting	NO	YES	4	RW		
D1091	Sets slave station On or Off (bit 0–bit 7 correspond to slave stations number 0–7)	NO	YES	FFFFH	RW		
D1092	Delay before start of initialization	NO	YES	0	RW		
D1093	Break time detection	NO	YES	1000ms	RW		
D1094	Break number detection	NO	YES	3	RW		

Special D	Description of Function	PDO Map	Power off Memory	Default	R/W
D1095	Reserved	_	_		-
D1096					
D1097	Corresponding real-time transmission type (PDO) Setting range: 1–240	NO	YES	1	RW
D1098	Corresponding real-time receiving type (PDO) Setting range: 1–240	NO	YES	1	RW
D1099	Initialization completion delay time Setting range: 1–60000 sec.	NO	YES	15 sec.	RW
D2000+100*n	Station number n of slave station Setting range: 0–127 0: No CANopen function	NO	YES	0	RW

The LTC supports 8 slave stations under the CANopen protocol; each slave station occupies 100 special D locations; stations are numbered 1–8, total of 8 stations.

Explanation of	Slave station no. 1	D2000	Node ID
slave station		D2001	Slave station no. 1 torque restrictions
number			
		D2099	channel 4
	Slave station no. 2	D2100	Node ID
		D2101	Slave station no. 2 torque restrictions
		_	-
		D2199	Address 4(H) corresponding to receiving channel 4
	Slave station no. 3	D2200	Node ID
		D2201	Slave station no. 3 torque restrictions
		_	-
		D2299	Address 4(H) corresponding to receiving channel 4
		Û	
	Slave station no. 8	D2700	Node ID
		D2701	Slave station no. 8 torque restrictions
		_	_
		D2799	Address 4(H) corresponding to receiving channel 4

1. The range of n is 0–7

2. ● Indicates PDOTX, ▲ Indicates PDORX; unmarked special D can be refreshed using the CANFLS command

Special D	Description of Function	Default:	R/W
D2000+100*n	Station number n of slave station Setting range: 0–127 0: No CANopen function	0	RW
D2002+100*n	Manufacturer code of slave station number n (L)	0	R
D2003+100*n	Manufacturer code of slave station number n (H)	0	R
D2004+100*n	Manufacturers product code of slave station number n (L)	0	R
D2005+100*n	Manufacturers product code of slave station number n (H)	0	R

Basic definitions

Special D	Description of Eurotion	Default		PD	001	Def	ault:	
Special D	Description of Function	Delault.	PDO wapping	1	2	3	4	K / V V
D2006+100*p	Communications break handling method of	0	60074 00104					
D2000+100 11	slave station number n	0	0007 -0010					
D2007+100*n	Error code of slave station number n error	0	603FH-0010H					R
D2008+100*n	Control word of slave station number n	0	6040H-0010H	٠		•	٠	RW
D2009+100*n	Status word of slave station number n	0	6041H-0010H					R
D2010+100*n	Control mode of slave station number n	2	6060H-0008H					RW
D2011+100*n	Actual mode of slave station number n	2	6061H-0008H					R

Velocity Control

Slave station number n=0-7

Special D	Description of Eurotion	Default		PD	00	Def	ault:	DAA
Special D	Description of Function	Delault.		1	2	3	4	
D2001+100*n	Torque restriction on slave station number n	0	6072H–0010H					RW
D2012+100*n	Target speed of slave station number n	0	6042H-0010H	•				RW
D2013+100*n	Actual speed of slave station number n	0	6043H-0010H					R
D2014+100*n	Error speed of slave station number n	0	6044H-0010H					R
D2015+100*n	Acceleration time of slave station number n	1000	604FH-0020H					R
D2016+100*n	Deceleration time of slave station number n	1000	6050H-0020H					RW

Torque control

Slave station number n=0-7

Special D	Description of Eurotion	Default: PDO Mapping PDO Do	Def	ault:				
Special D		Delault.		1	2	3	4	r///
D2017+100*n	Target torque of slave station number n	0	6071H-0010H				٠	RW
D2018+100*n	Actual torque of slave station number n	0	6077H-0010H					R
D2019+100*n	Actual current of slave station number n	0	6078H-0010H					R

Position control

Slave station number n=0-7

Special D	Description of Eurotian	Default: PDO Manning PDO Defa		ault:				
Special D	Description of Function	Delault.	PDO wapping	1	2	3	4	R/VV
D2020+100*n	Target of slave station number n (L)	0						RW
D2021+100*n	Target of slave station number n (H)	0				•		RW
D0000 1 400*m	Actual position of slave station number n	0						Р
D2022+100 11	(L)	0	60640 00200					ĸ
D2022+100*p	Actual position of slave station number n	0	00040-00200					Р
D2023+100 II	(H)	0						R
D2024+100*n	Speed chart of slave station number n (L)	10000	60910 00200					RW
D2025+100*n	Speed chart of slave station number n (H)	0						RW

20XXH correspondences: MI MO AI AO

Slave station number n=0-7

Special D	Description of Eurotion	Default: PDO Mapping PDO Default:	ault:					
	Description of Function			1	2	3	4	R/VV
D2026+100*n	MI status of slave station number n	0	2026H-0110H					RW
D2027+100*n	MO setting of slave station number n	0	2026H-4110H		•			RW
D2028+100*n	AI1 status of slave station number n	0	2026H-6110H					RW
D2029+100*n	AI2 status of slave station number n	0	2026H-6210H					RW
D2030+100*n	AI3 status of slave station number n	0	2026H-6310H					RW
D2031+100*n	AO1 status of slave station number n	0	2026H-A110H		•			RW
D2032+100*n	AO2 status of slave station number n	0	2026H-A210H		•			RW
D2033+100*n	AO3 status of slave station number n	0	2026H-A310H		•			RW

PDO reflection length setting:

Special D	Description of Function	Default:	R/W
D2034+100*n	Real-time transmission setting of slave station number n	000AH	RW
D2067+100*n	Real-time reception setting of slave station number n	0000H	RW

13-5-4 PLC Communication Address

Device	Range	Туре	Address (Hex)
Х	00–37 (Octal)	bit	0400–041F
Y	00–37 (Octal)	bit	0500–051F
Т	00–159	bit/word	0600–069F
М	000–799	bit	0800–0B1F
М	1000–1079	bit	0BE8–0C37
С	0–79	bit/word	0E00–0E47
D	00–399	word	1000–118F
D	1000-1099	word	13E8–144B
D	2000-2799	word	17D0–1AEF

Command code that can be used

Function Code	Description of Function	Function target
01	Coil status read	Y,M,T,C
02	Input status read	X,Y,M,T,C
03	Read single unit of data	T,C,D
05	Compulsory single coil status change	Y,M,T,C
06	Write single unit of data	T,C,D
0F	Compulsory multiple coil status change	Y,M,T,C
10	Write multiple units of data	T,C,D

NOTE: When PLC functions have been activated, LTC can match PLC and drive parameters; this method employs different addresses, drives (default station number is 1, PLC sets station number as 2)

13-6 Introduction to the Command Window

13-6-1 Overview of Basic Commands

Ordinary commands

Command Code	Function	OPERAND	Execution Speed (us)
LD	Load contact a	X, Y, M, T, C	0.8
LDI	Load contact b	X, Y, M, T, C	0.8
AND	Connect contact a in series	X, Y, M, T, C	0.8
ANI	Connect contact b in series	X, Y, M, T, C	0.8
OR	Connect contact a in parallel	X, Y, M, T, C	0.8
ORI	Connect contact b in parallel	X, Y, M, T, C	0.8
ANB	Series circuit block	N/A	0.3
ORB	Parallel circuit block	N/A	0.3
MPS	Save to stack	N/A	0.3
MRD	Stack read (pointer does not change)	N/A	0.3
MPP	Read stack	N/A	0.3

Output command

Command Code	Function	OPERAND	Execution Speed (us)
OUT	Drive coil	Y, M	1
SET	Action continues (ON)	Y, M	1
RST	Clear contact or register	Y, M, T, C, D	1.2

Timer, counter

Command Code	Function	Function OPERAND		
TMR	16-bit timer	T-K or T-D commands	1.1	
CNT	16-bit counter	C-K or C-D (16-bit)	0.5	

Main control command

Command Code	Function	OPERAND	Execution Speed (us)
MC	Common series contact connection	N0–N7	0.4
MCR	Common series contact release	N0–N7	0.4

Contact rising edge / falling edge detection command

Command Code	Function	OPERAND	Execution Speed (us)
LDP	Start of forward edge detection action	X, Y, M, T, C	1.1
LDF	Start of reverse edge detection action	X, Y, M, T, C	1.1
ANDP	Forward edge detection series connection	X, Y, M, T, C	1.1
ANDF	Reverse edge detection series connection	X, Y, M, T, C	1.1
ORP	Forward edge detection parallel connection	X, Y, M, T, C	1.1
ORF	Reverse edge detection parallel connection	X, Y, M, T, C	1.1

Upper / lower differential output commands

Command Code	Function	OPERAND	Execution Speed (us)
PLS	Upper differential output	Y, M	1.2
PLF	Lower differential output	Y, M	1.2

Stop command

Command Code	Function	OPERAND	Execution Speed (us)
END	Program conclusion	N/A	0.2

Other commands

Command Code	Function	OPERAND	Execution Speed (us)
NOP	No action	N/A	0.2
INV	Inverse of operation results	N/A	0.2
Р	Index	Р	0.3

3-6-2 Detailed Explanation of Basic Commands										
Command	Function									
LD	Load contact a									
Onerend	X0–X17	Y0–Y17	M0-M799	T0–159		C0–C79	D0–D399			
Operand	✓	\checkmark	✓	\checkmark		✓	_			
Explanation	The LD command is used for contact a starting at the left busbar or contact a starting at a contact circuit block; its function is to save current content and save the acquired contact status in the cumulative register.									
Example	Ladder diagra	m:		Command	d code	: Des	cription:			
				LD	X0	Load Con	tact a of X0			
				AND	X1	Create se connectio of X1	ries n to contact a			
				OUT	Y1	Drive Y1 o	coil			
Command			Fun	ction						
LDI	Load contact b									
Onerend	X0–X17	Y0–Y17	M0-M799	T0–159		C0–C79	D0–D399			
Operand	\checkmark	\checkmark	✓	✓		\checkmark	_			
Explanation	The LDI comm a contact circu contact status	and is used for uit block; its fu in the cumulat	r contact b star unction is to sa ive register.	ting at the l ave current	eft bus conte	sbar or conta ent and sav	act b starting at e the acquired			
Example	Ladder diagrar	n:	5	Command	code:	Des	cription:			
) X1 (Y1)		LDI	X0	Load Conta	act b of X0			
	V I	AND	X1	Create ser to contact	ies connection a of X1					
				OUT	Y1	Drive Y1 co	oil			

. . _ ~ ...

Command	Function								
AND	Connect contact a in series								
Oranarad	X0–X17	Y0–Y17	M0–M799	T0–159	C0–C79	D0–D399			
Operand	✓	✓	✓	✓	✓	—			
The AND command is used to create a series connection to contact a; first reads current status of the designated series contact and logical operation results before contact in order to perform "AND" operation; saves results in cumulative register.									
Ladder diagram: Command code: Description: X1 X0 LDI X1 Load Contact b of X									

	(V1)

Command	code:	Description:
LDI	X1	Load Contact b of X1
AND	X0	Create series connection to contact a of X0
OUT	Y1	Drive Y1 coil

Command	Function										
ANI	Connect contact b in series										
Onerend	X0–X17	Y0–Y17	M0-M799	T0–159		C0–C79	D0–D399				
Operand	✓	✓	✓	✓		✓	—				
Explanation The ANI command is used to create a series connection to contact b; its function is to first read current status of the designated series contact and logical operation results before contact in order to perform "AND" operation: saves results in cumulative register.											
Example	Ladder diagram	m:		Command c	ode:	Des	cription:				
		Ŷ1	LD >	< 1	Load Conta	ct a of X1					
				ANI X	(0	Create serie to contact b	es connection of X0				

OUT

Y1

Drive Y1 coil

Command			Fund	ction					
OR	Connect contact a in parallel								
	X0–X17	Y0–Y17	M0–M799	T0–159	C	0–C79	D0-D399		
Operand	✓	\checkmark	✓	\checkmark		✓			
Explanation	Explanation The OR command is used to establish a parallel connection to contact a; its function is to fin read current status of the designated series contact and logical operation results before contact in order to perform "OR" operation; saves results in cumulative register. Example Ladder diagram: X0 Logical Contact a of X0								
				OR	X1	Create so connection of X1	eries on to contact a		
				OUT	Y1	Drive Y1	coil		
Command			Fund	ction					
ORI	Connect conta	ict b in paralle							
Operand	X0–X17	Y0–Y17	M0-M799	T0–159	C	0–C79	D0–D399		
Operand	✓	\checkmark	✓	\checkmark		✓	—		
Explanation	The ORI comma read current sta in order to perfo Ladder diagram	and is used to e tus of the design orm "OR" operat m:	establish a parall nated series con ion; saves resul	el connection t tact and logica ts in cumulative Command	o conf l opera e regis code	tact a; its fu ation result ster. :: De	unction is to first s before contact scription:		
		(Y1	LD	X0	Load Cor	ntact a of X0		
	X1	ORI	X1	Create se connection of X1	eries on to contact b				
				OUT	Y1	Drive Y1	coil		
Command			Fund	rtion					

Command	Function									
ANB	Series circuit block									
Operand	N/A									
Explanation	ANB performs an "AND cumulative register conte	" operation on th ent.	ne previously	saved logic	results and the current					
Example	Ladder diagram:		Comm	nand code:	Description:					
Example	X0 AND X1	X1	LD	X0	Load Contact a of X0					
		<u>(Y1</u>)	ORI	X2	Establish parallel connection to contact b of X2					
			LDI	X1	Load Contact b of X1					
	Block A Block	В	OR	X3	Establish parallel connection to contact a of X3					
			ANB		Series circuit block					
			OUT	Y1	Drive Y1 coil					

Command	Function										
ORB	Parallel circuit block										
Operand		N/A									
Explanation	ORB performs an "OR" operation on the cumulative register content.	e previously sa	ved log	ic results and the current							
Example	Ladder diagram:	Comman	d code:	Description:							
		LD	X0	Load Contact a of X0 Establish parallel							
		ANI	X1	connection to contact b of X1							
	Block B	LDI	X2	Load Contact b of X2 Establish parallel							
		AND	X3	connection to contact a of X3							
		ORB		Parallel circuit block							
		OUT	Y1	Drive Y1 coil							
Command	F	unction									
MPS	Save to stack										
		IN/A									
Explanation	Save current content of cumulative regi	ster to the stac	ck. (Add	one to stack pointer)							
Command	F	unction									
MRD Operand	Read stack (pointer does not change)	N/A									
Explanation	Reads stack content and saves to cumu	lative register.	(Stack	pointer does not change)							
Command	F	unction									
MPP	Read stack										
Operand		N/A									
Explanation	Retrieves result of previously-save log cumulative register. (Subtract one from	gical operatior stack pointer)	n from t	he stack, and saves to							
Example	Ladder diagram:	Command	d code:	Description:							
	X0 MPS X1	LD	XU	Load Contact a of XU							
				Create series							
		AND	X1	connection to contact a of X1							
		OUT	Y1	Drive Y1 coil							
	Y2	MRD		Read stack (pointer does not change)							
	END	AND	X2	Create series connection to contact a of X2							
		OUT	M0	Drive M0 coil							
		MPP	2/0	Read stack							
		END	Y2	Program conclusion							

Command	Function							
TMR	16-bit timer							
Operand	I-K 10–1159, K0–K32,767							
Explanation	When the IMR command is executed, the designated timer coil will be electrified, and							
	the timer will b	egin timing. Tr	ne contacts act	ion will be as	S TOIIOV	s when th	e timing value	
	reaches the de	esignated set v	value (timing va	alue >= set v	/aiue):			
	NC (Norma	lly Close) contai	ct Open					
	If the RST con	nmand has no	t been execute	d the status	s of the	designate	ed element	
	will remain un	changed.				acongriate		
	Ladder diagra	m:		Command code: Description:				
Example	X0 C			LD	X0	Load Cont	tact a of X0	
		TMR T5	K1000	TMR TS	5 K1000	T5 timer	1// 000	
						Set value	as K1000	
Command			Fund	ction				
CNT	16-bit counter							
	СК		K32 767					
Operand		C0-C79, R0-	-1(32,707					
	C-D	C0–C79, D0-	-D399					
Explanation	When the CN	Γ command is	executed from	Off→On, th	is indic	ates that t	he designated	
	counter coil g	oes from no p	ower \rightarrow electr	ified, and 1	will be	e added to	the counters	
	count value: when the count reaches the designated value (count value = set value)							
	the contact will have the following action:							
	NO (Norma	lly Open) conta	act Closed					
	NC (Normal	ly Close) conta	act Open					
	After the coun	t value has be	en reached, th	e contact ar	id cour	nt value wi	ll both remain	
	unchanged ev	en if there is c	ontinued count	t pulse input	. Pleas	se use the	RST	
	command if yo	ou wish to rest	art or clear the	count.				
	Ladder diagra	m:		Command	code:	Des	scription:	
Example	X0 _			LD	X0	Load Cont	tact a of X0	
		CNT C2	K100	CNT C	2 K100	C2counter	-	
					2 11100	Set value	as K100	
Command			Fund	ction				
LDP	Start of forwar	d edge detecti	ion action					
Operand	X0–X17	Y0–Y17	M0–M799	T0–159	0	C79	D0–D399	
Operand	✓	\checkmark	✓	\checkmark		\checkmark	—	
[Evaluation]	The LDP comm	and has the sar	ne usage as LD	, but its action	n is diffe	erent; its fur	nction is to save	
Explanation	current content	, while also sav	ring the detected	d state of the	rising	edge of the	e contact to the	
	cumulative regis	ster.		Command	code.	Dec	cription:	
Example	Ladder diagra	m:		Command	couc.			
	X0 X1	(V1)		LDP	X0	Start of X	(0 forward	
		Y I				Croote of	ection action	
				ΔΝΠ	X1	Connection	on to contact	
						a of X1		
				OUT	Y1	Drive V1	coil	
	Please refer to t	the function sne	cifications table	for each devi	r in ea	ories for the	scope of usage	
Remark		i i i i i i i i i i i i i i i i i i i					soope of usage	

of each operand. A rising edge contact will be TRUE after power is turned on if the rising edge contact is On before power is turned on to the PLC.

•			-						
Command	Function								
Operand	NU–N7								
Explanation	MC is the main will be execute and MCR will	n control initiation ad normally. Wh act as follows:	on command en the MC o	d, and a comma	any comm nd is Off, a	ands between any commands	MC and MCR between MC		
	Determinatio	on of commands	5	Description					
	Ordin	on timor	The tim	The timing value will revert to 0, the coil will lose					
	Ordii	power, a	power, and the contact will not operate						
	Co	ounter	The coil contact	will los will stay	e power, a y in their c	and the count v surrent state	alue and		
	Coil driven b	y OUT comman	d None re	ceive p	ower				
	Elements driv con	ven by SET, RS hmands	T Will rem	ain in t	heir currer	nt state			
	Applicatio	ns commands	None ar	e actua	ited				
	MCR is the mai	n control stop col	mmand, and mmands be	is place	ed at the er	nd of the main co mand	ontrol program.		
	The MC-MCR n maximum only	nain control progr 8 levels; use in th	ram commar e order N0–	nds sup N7, plea	port a neste ase refer to	ed program struct the following pr	cture with a ogram:		
Example	Ladder diagra	m.	Cor	nmand		Descriptio	n:		
<u> </u>			C חו [ode: vr		ontact a of Y0			
		MC N0			Connec	tion of N0 comn	non series		
	X1		MC	N	contact				
	×2		LD	X1	Load C	ontact a of X1			
	↓ ↑ ↓	:	rt	Driver					
	X3		LD	X2	2 Load C	Load Contact a of X2 Connection of N1 common series			
		- <u>Y1</u>	МС	N1	Connec				
	↓	MCR N1	LD	X3	Load C	ontact a of X3			
			Y1	Drive Y	rive Y1 coil				
	•	MCR N0	MCR	N1	Release	Release N1 common series contact			
	X10	MC NO] :						
	X11		MCR	NC NC	Release	e N0 common se	eries contact		
		-Y10	LD	X1	0 Load C	ontact a of X10			
	↓ ↓	NO.	мс	N	Connec	tion of N0 comn	non series		
		MCR NU	LD	X1	1 Load C	ontact a of X11			
			OUT :	Y1	0 Drive Y	10 coil			
			MCR	NC	Release	e N0 common se	eries contact		
Command			Fi	unction					
LDF	Start of revers	e edge detectio	n action			1	1		
Operand	X0–X17	Y0–Y17	M0-M799	ר ר	0–159	C0–C79	D0–D399		
	✓	✓	\checkmark		✓	✓	_		
Explanation	The LDF comm current content cumulative regis	and has the sam while also savin ster.	e usage as g the detect	LD, but ted stat	its action is e of the fa	s different; its fu Iling edge of the	nction is to save e contact to the		
	l adder diagray	m.		Com	mand code	e: Des	cription:		
Example		— (Y1)		LDF	X0	Start of X0 detection a	reverse edge		
	1				X1	Create seri	es connection		

OUT

Y1

to contact a of X1

Drive Y1 coil

Command	Function									
ANDP	Forward edge detection series connection									
Operand	X0–X17	Y0-Y17	M0–M799	T0–159	C0–C79	D0–D399				
	✓	✓	\checkmark	✓	✓	—				
Explanation	The ANDP command used for a contact rising edge detection series connection.									
Example	Ladder diagram:			Command code: Description: LD X0 Load Contact a of X0 X1 Forward edge						
				ANDP	X1 detection series connection					
				001	Y1 Drive Y1	COII				
Command	Function									
ANDF	Reverse edge detection series connection									
Operand	X0–X17	Y0–Y17	M0–M799	T0–159	C0–C79	D0–D399				
	✓	✓	✓	✓	✓	_				
Explanation	The ANDF command is used for a contact falling edge detection series connection.									
Example	Ladder diagram: X0 X1			Command code: Description:						
Example				LD X0 Load Contact a of X0						
				ANDF 2	X1 Reve X1 detectior	rse edge 1 series				
				001	Y1 Drive Y1	COII				
Command Function										
ORP	Forward edge	detection para	allel connection		1	1				
Operand	X0–X17	Y0–Y17	M0–M799	T0–159	C0–C79	D0–D399				
	✓	\checkmark	\checkmark	✓	\checkmark	_				
Explanation The ORP command is used for a contact rising edge detection parallel connection.										
	Ladder diagram: Command code: Description:									
Example	Y1 X1			LD X0 Load Contact a of X0						
				ORP 2	X1 Forward edge X1 detection parallel connection					
	OUT Y1 Drive Y1 coil									
Command	Function									
ORF	Reverse edge detection parallel connection									
Operand	X0–X17	Y0–Y17	M0–M799	T0–159	C0–C79	D0–D399				
	✓	✓	✓	✓	✓	—				
Explanation The ORF command is used for contact falling edge detection parallel connection.										
	Ladder diagram:			Command code: Description:						
Example		(Y1	LD	X0 Load C	ontact a of X0				
				ORF	X1 Reverse edge X1 detection parallel connection					
				OUT	Y1 Drive Y	1 coil				
Command			Funct	ion						
-------------	---	---	--	----------------------------	---------------------------------	---------------------------------	--	--	--	--
Command										
PLS	Upper differen	tial output	1	,	,	1				
Operand	X0–X17	Y0–Y17	M0-M799	T0–159	C0–C79	D0–D399				
Operand	_	✓	✓	-	_	—				
Explanation	Upper differen PLS comman consisting of c	tial output con d will be exec one scanning p	nmands. When X cuted, and M0 v period.	K0=Off→On will send one	(positive edge e pulse, with	-triggered), the a pulse length				
Example	Ladder diagra	m:		Command of	code: De	scription:				
		PLS M0		LD X	X0 Load Co	ntact a of X0				
	M0	SET Y0		PLS I	MO Uppe output	er differential				
	Time sequenc	e diagram:		LD N	M0 Load Co	ntact a of M0				
	X0 One sca	an cycle	One scan cycle	SET	Y0 Y0 Action (ON)	n continues				
	M0									
	YO									
	'									

Command	Function									
PLF	Lower differen	tial output		-						
Operand	X0–X17	Y0–Y17	M0–M799	T0–159	C	0–C79	D0–D399			
Operand	_	\checkmark	~	_		_	_			
	Lower differen	tial output com	nmand. When X()= On→Off (negat	tive edge-	triggered), the			
Explanation	PLF comman	d will be exe	cuted, and M0	will send o	ne pi	ulse, with	pulse length			
	consisting of c	one scanning p	eriod.				-			
	Ladder diagra	m:		Command of	code:	Des	scription:			
Example	×0 	PLF M0		LD 2	X0	Load Cor	ntact a of X0			
	M0	SET Y0		PLF I	M 0	M0 Lowe output	r differential			
		o diogram:		LD I	0N	Load Cor	ntact a of M0			
		e ulayrann.			-	V0 Action	continues			
	X0			SET `	Y0	(ON)	rcontinues			
	мо									
	Y0									

Command	Function
END	Program conclusion
Operand	N/A
Explanation	An END command must be added to the end of a ladder diagram program or command program. The PLC will scan from address 0 to the END command, and will return to address 0 and begins scanning again after execution.

Command	Function									
NOP	No action									
Operand	N/A									
Explanation	The command NOP does not perform any of execution of this command will retain the or used in the following situation: the NOP cor command that is deleted without changing to Ladder diagram:	peration iginal logi nmand ca he progra Commar	in the pro cal opera in be use im length nd code:	ogram. Because ation results, it can be d instead of a n. Description:						
	NOP command will be simplified and not	LD	X0	Load Contact b of X0						
	displayed when the ladder diagram is displayed.	NOP		No action						
		OUT	Y1	Drive Y1 coil						

Command	Function											
INV	Inverse of operation resu	nverse of operation results										
Operand		N/A										
Explanation	Saves the result of the cumulative register.	logic inversion	operation	prior to th	e INV command in the							
Example	Ladder diagram:		Comm	and code:	Description:							
Example	e X0 Y1		LD	X0	Load Contact a of X0							
			INV		Inverse of operation results							
			OUT	Y1	Drive Y1 coil							

Command	Function								
P	Index								
Operand	P0-P255								
Explanation	Explanation Pointer P is used to subprogram call command API 01 CALL. User does not require starting from zero, but the number cannot be used repeatedly, otherwise an unpredictable error will occur.								
Example	Ladder diagram: X0			Comman	d code: X0	Description:			
		CALL	P10	CALL	P10	Call command CALL to			

		_	CALL	P10	CALL	F
	X1	Ţ	\frown			
P10			(Y1)		:	
	I		\smile		P10	

:		
P10		Pointer P10
LD	X1	Load Contact a of X1
OUT	Y1	Drive Y1 coil

P10

13-6-3	Overview	of Application	Commands
10 0 0	010111011	or / apprioution	Commanao

		Comma	and Code	Р	E westien	STE	EPS
Classification	API	16 bit	32 bit	command	Function	16 bit	32 bit
	01	CALL	-	✓	Call subprogram	3	-
Circuit control	2	SRET	-	-	Conclusion of subprogram	1	-
	06	FEND	-	-	Conclusion a main program	1	-
	10	CMP	DCMP	✓	Compares set output	7	13
Sond	11	ZCP	DZCP	✓	Range comparison	9	17
comparison	12	MOV	DMOV	✓	Data movement	5	9
companson	13	SMOV	DSMOV	✓	Nibble movement	11	21
	15	BMOV	_	✓	Send all	7	_
	18	BCD	DBCD	✓	BIN to BCD transformation	5	9
	19	BIN	DBIN	✓ ✓	BCD to BIN transformation	5	9
	20	ADD	DADD	✓	BIN addition	7	13
Four logical	21	SUB	DSOR	✓ ✓	BIN subtraction	/	13
operations	22	MUL		✓ ✓	BIN multiplication	/	13
	23			V	BIN division	/	13
	24			V	BIN add one	<u>、</u>	5 5
Potational	20			V V	Bin Subtraction	5	5
displacement	30			· ·	L eff rotation	5	
uispiacement	40		DROL			5	
	40	ZRST	_	v	Clear range	5	-
	41	DECO	DDECO	~	Decoder	7	13
	42	ENCO	DENCO	✓	Encoder	7	13
Data Process	43	SUM	DSUM	✓	ON bit number	5	9
	44	BON	DBON	✓	ON bit judgement	7	13
	49	FLT	DFLT	~	BIN whole number → binary floating point number transformation	5	9
	110	_	DECMP	~	Comparison of binary floating point numbers	_	13
	111	_	DEZCP	~	Comparison of binary floating	-	17
	116	_	DRAD	✓	Angle → Diameter	_	9
	117	_	DDEG	✓	Diameter \rightarrow angle	_	9
	120	-	DEADD	~	Binary floating point number addition	_	13
	121	_	DESUB	~	Binary floating point number subtraction	_	13
	122	_	DEMUL	~	Binary floating point number multiplication	_	13
	123	-	DEDIV	~	Binary floating point number division	_	13
Floating point	124	-	DEXP	~	Binary floating point number obtain exponent	_	9
operation	125	-	DLN	~	Binary floating point number obtain logarithm	-	9
	127	-	DESQR	~	Binary floating point number find square root	_	9
Floating point operation	129	INT	DINT	~	Binary floating point number → BIN whole number transformation	5	9
	130	_	DSIN	~	Binary floating point number SIN operation	-	9
	131	-	DCOS	~	Binary floating point number COS operation	_	9
	132	_	DTAN	~	Binary floating point number TAN operation	_	9
	133	_	DASIN	~	Binary floating point number ASIN operation	_	9

		Comma	and Code	Р		STE	PS
Classification	API	16 bit	32 bit	command	Function	16 bit	32 bit
	134	-	DACOS	~	Binary floating point number	_	9
	135	-	DATAN	~	Binary floating point number ATAN operation	_	9
	136	-	DSINH	~	Binary floating point number SINH operation	_	9
	137	-	DCOSH	~	Binary floating point number COSH operation	_	9
	138	-	DTANH	~	Binary floating point number TANH operation	_	9
Other	147	SWAP	DSWAP	✓	Exchange the up/down 8 bits	3	5
communicatio n	150	MODRW	_	~	MODBUS read/write	7	Ι
	160	TCMP	_	\checkmark	Compare calendar data	11	—
	161	TZCP	-	\checkmark	Compare calendar data range	9	-
Calendar	162	TADD	_	✓	Calendar data addition	7	-
	163	TSUB	-	\checkmark	Calendar data subtraction	7	-
	166	TRD	_	\checkmark	Calendar data read	3	-
	170	GRY	DGRY	✓	BIN→GRY code transformation	5	9
GRAY code	171	GBIN	DGBIN	~	GRY code →BIN transformation	5	9
	215	LD&	DLD&	-	Contact form logical operation LD#	5	9
Contact form logical operation	216	LD	DLD	-	Contact form logical operation LD#	5	9
	217	LD^	DLD^	-	Contact form logical operation LD#	5	9
	218	AND&	DAND&	-	Contact form logical operation AND#	5	9
	219	ANDI	DANDI	-	Contact form logical operation AND#	5	9
operation	220	AND^	DAND^	-	Contact form logical operation AND#	5	9
	221	OR&	DOR&	-	Contact form logical operation OR#	5	9
	222	OR	DOR	-	Contact form logical operation OR#	5	9
	223	OR^	DOR^	-	Contact form logical operation OR#	5	9
	224	LD =	DLD =	-	Contact form compare LD*	5	9
	225	LD >	DLD >	-	Contact form compare LD*	5	9
	226	LD <	DLD <	-	Contact form compare LD*	5	9
	228	LD < >	DLD < >	-	Contact form compare LD*	5	9
	229	LD < =	DLD < =	-	Contact form compare LD*	5	9
	230	LD > =	DLD > =	-	Contact form compare LD*	5	9
Contact form	232	AND =	DAND =	-	Contact form compare AND*	5	9
compare	233	AND >	DAND >	-	Contact form compare AND*	5	9
command	234	AND <	DAND <	-	Contact form compare AND*	5	9
	236	AND < >	DAND < >	-	Contact form compare AND*	5	9
	237	AND < =	DAND < =	-	Contact form compare AND*	5	9
	238	AND > =	DAND > =	-	Contact form compare AND*	5	9
	240	OR =	DOR =	-	Contact form compare OR*	5	9
	241	OR >	DOR >	-	Contact form compare OR*	5	9
	242	OR <	DOR <	-	Contact form compare OR*	5	9

Classification		Comma	and Code	P	Function	STE	EPS
Classification	API	16 bit	32 bit	command	Function	16 bit	32 bit
	244	OR < >	DOR < >	-	Contact form compare OR*	5	9
	245	OR < =	DOR < =	-	Contact form compare OR*	5	9
	246	OR > =	DOR > =	-	Contact form compare OR*	5	9
	275	-	FLD =	-	Floating point number contact form compare LD*	-	9
Floating point contact form	276	-	FLD >	-	Floating point number contact form compare LD*	-	9
	277	-	FLD <	-	Floating point number contact form compare LD*	-	9
	278	-	FLD < >	-	Floating point number contact form compare LD*	-	9
	279	-	FLD < =	-	Floating point number contact form compare LD*	-	9
	280	-	FLD > =	-	Floating point number contact form compare LD*	-	9
	281	-	FAND =	-	Floating point number contact form compare AND*	-	9
	282	-	FAND >	-	Floating point number contact form compare AND*	-	9
	283	-	FAND <	-	Floating point number contact form compare AND*	-	9
	284	-	FAND < >	-	Floating point number contact form compare AND*	-	9
Compare command	285	-	FAND < =	-	Floating point number contact form compare AND*	-	9
	286	-	FAND > =	-	Floating point number contact form compare AND*	-	9
	287	-	FOR =	-	Floating point number contact form compare OR*	-	9
	288	-	FOR >	-	Floating point number contact form compare OR*	-	9
	289	-	FOR <	-	Floating point number contact form compare OR*	-	9
	290	-	FOR < >	-	Floating point number contact form compare OR*	-	9
	291	-	FOR < =	-	Floating point number contact form compare OR*	-	9
	292	-	FOR > =	-	Floating point number contact form compare OR*	-	9
	139	RPR	_	✓	Read servo parameter	5	
	140	WPR		√	Write servo parameter	5	—
	141	FPID	-	✓	Drive PID control mode	9	—
	142	FREQ	_	✓	Drive torque control mode	7	—
	262	_	DPOS	✓	Set target	-	5
	263	TORQ	—	\checkmark	Set target torque	5	-
Drive special	261	CANRX		✓	Read CANopen slave station data	9	-
command	264	CANTX	_	✓	Write CANopen slave station data	9	-
	265	CANFLS	_	✓	Refresh special D corresponding to CANopen	3	-
	320	ICOMR	DICOMR	✓	Internal communications read	9	17
	321	ICOMW	DICOMW	✓	Internal communications write	9	17
	323	WPRA	_	-	RAM write in drive parameters	5	-

13-6-4 Detailed Explanation of Applications Commands API CALL (\mathbf{S}) Call subprogram Ρ 01 16-bit command (3 STEP) Bit device Word device Pulse Continuous CALLP Υ Μ H KnX KnY KnM T С D CALL Х Κ execution type execution type Notes on operand usage: 32-bit command The S operand can designate P — ____ _ LTC series device: The S operand can designate P0-P63 Flag signal: none • **S** : Call subprogram pointer. Explanation Write the subprogram after the FEND command. The subprogram must end after the SRET command.

• Refer to the FEND command explanation and sample content for detailed command functions.

API 02 SRET	· C	Conclu	ision of s	subprogram								
Bit device	Word device		16-bit cor	mmand (1 STE	P)							
X Y M	K H KnX KnY KnM T C	D	FEND	Continuous execution type	—	_						
Notes on operand usag	e:		<u>32-bit cor</u>	mmand	 !	1						
No operand			L	<u> </u>	L	<u> </u>						
A contact-driven c	ommand is not needed		Flag signa	al: none								
A contact-driven command is not needed. Automatically returns next command after CALL command												

- Indicates end of subprogram. After end of subprogram, SRET returns to main program, and executes next command after the original call subprogram CALL command.
- Refer to the FEND command explanation and sample content for detailed command functions.

Bit device Word device 16-bit command (7 STEP) X Y M K H KnX KnM T C D S1 *													
X Y M K H KnX KnM T C D CMP Continuous execution type CMPP Pulse execution type S1 1													
S1 I													
D * * * * * 32-bit command (13 STEP) Notes on operand usage: DCMP Continuous DCMPP Pulse The operand D occupies three consecutive points Flag signal: none Flag signal: none Explanation S1: Compare value 1. S2: Compare value 2. D: Results of compariso													
Notes on operand usage: DCMP Continuous DCMP Pulse The operand D occupies three consecutive points Flag signal: none Explanation S1: Compare value 1. S2: Compare value 2. D: Results of compariso													
Notes on operand usage: The operand D occupies three consecutive points Flag signal: none Explanation S1: Compare value 1. S2: Compare value 2. D: Results of compariso													
Explanation • S1: Compare value 1. S2: Compare value 2. D: Results of comparise													
Explanation • S1: Compare value 1. S2: Compare value 2. D: Results of comparison													
\blacksquare Explanation \blacksquare \blacksquare . Compare value 1. \blacksquare . Compare value 2. \blacksquare . Results of comparis													
Explanation \bullet (S1): Compare value 1. (S2): Compare value 2. (D): Results of comparison.													
• Compares the size of the content of operand $(S1)$ and $(S2)$; the results of													
 Size comparison is performed algebraically. All data is compared in the form (
numerical binary values. Because this is a 16-bit command, when b15 is 1, th													
indicates a negative number.													
When the designated device is Y0, it automatically occupies Y0, Y1 and Y2													
Example • When X10=On, the CMP command executes, and Y0, Y1 or Y2 will be On. W													
X10=Off, the CMP command will not execute, and the state of Y0, Y1 and Y2													
remain in the state prior to X10=Off.													
If ≥, ≤, or ≠ results are needed, they can be obtained via series/parallel connections of Y0-Y2													
YO													
If K10 > D10, Y0 = ON													
Y1													
If K10 = D10, Y1 = ON													
Y2													
I = I = If K10 < D10, Y2 = ON													
 To clear results of comparison, use the RST or ZRST command. 													
X10 X10													
RST M0 ZRST M0 M2													

RST

M2

AF 12	기 2 【	N	١OV	Ρ			S) (D		Da	ata m	ovemen	t		
	Bit	dev	ice			V	/ord	devic	e			16-bit cor	nmand (5 STE	P)	
	X	Y	M	К	Н	KnX	KnY	KnM	Т	С	D	MOV	Continuous	MOVP	Pulse
S				*	*	*	*	*	*	*	*		execution type		execution type
D							*	*	*	*	*	0011			1
Not	es on	operation	and u	sage:	none							32-bit cor	nmand (9STE		Dulas
										DMOV	Continuous	DMOVP	Pulse		
								i	execution type		execution type				
	Flag signal:														
E	Explanation • S: Data source. D: Destination of data movement.														
\subseteq	• When this command is executed the content of (S) will be directly moved to														ly moved to
			•												
). W	hen t	he co	omma	and	is not	exec	uted, the	e content of $\$	D wil	l not change.
				Whe	n Xí)=∩ff	the	conte	ont c	of D10	will	not chan	nge if X0=On	the valu	ie K10 will he
	Exam	ple		sent	t to d	ata n	, uic enisti	or D1	0		vviii	not onan	ige, ii 70–011,		
\sim				W/ha	n Y	ata n 1–∩ff	tha	cont	o. ont c	10 f	will	not chan	nge: if X1-On	the cur	rent value of
			•				, uie	lata r		tor D1		not chan	ige, il x1–01,		
				10 0		6 261		iala I	eyis		10.				
				1	X0							_			
					-			— м	ov	K10	DC				
										то					
												J			

AF 13	21 3 [b S	MO\	/ <mark>P</mark>	S) (m1) (m2) (D) (n	D Ni	bble	mov	eme	nt				
	Bit	dev	ice			V	Vord	devid	e			<u>16</u> -b	<u>it c</u> on	<u>ıma</u> nd	I <u>(11 S</u> TEI	P)]
	Х	Y	Μ	К	Н	KnX	KnY	KnM	Т	С	D	M	VC	Con	tinuous 🗧	SMOVP		Pulse
S				*	*	*	*	*	*	*	*]L		execu	ution type		exec	ution type
D			<u> </u>				*	*	*	*	*	32-h	it com	mand	(21 STE	P)		1
NOte	es on	oper	and u	sage:	none							DSN	ЛОV	Con exect	itinuous I ution type	DSMOV P	exec	Pulse cution type
												Flag	signa	I: M1	1168			
E	plan	ation	•	S): Da	ata so	ource	, (n	ו:1	The d	lata s	sourc	e tra	Insfer	rs starting	j bit nu	mbe	r.
$\stackrel{(III2)}{\frown}$: The data source transfers individual bit number. $\stackrel{(D)}{\frown}$: Transfer destine														stination.				
 Transferring starting bit number of the destination. BCD mode (M1168 = Off): 																		
 BCD mode (M1168 = Off): SMOV enables and operates BCD under this mode, the operation is similar to 															ilar to the			
	SMOV enables and operates BCD under this mode, the operation is similar to t way SMOV operates decimal numbers. The command copies specific bit numbers															it number		
	way SMOV operates decimal numbers. The command copies specific bit numb of arithmetic element S (S is a 4-figure decimal number), and sends the bit numb															it number		
	of arithmetic element S (S is a 4-figure decimal number), and sends the bit num to arithmetic element D (D is also a 4-figure decimal number). The current data															nt data on		
	to arithmetic element D (D is also a 4-figure decimal number). The current data the target register will be covered.																	
	the target register will be covered. ● m₁ range: 1–4																	
			•	m ₂ I	ange	e: 1−ı	m₁ (n	n_2 car	nnot l	be la	rger 1	than	m₁)					
			•	n ra	nge:	m ₂ -4	4 (n c	annc	ot be	smai	ier th	an m	1 ₂)					
E	xamp	ole 1	•	Whe the in th dec hun the of th	en M decir ne the imal dred digits	1168 mal n ousa numl s pla s in th ccima	= Of number nds p ber st ce of ne the	f (BC er sta blace tarting the c busar	D mo arting of the g fror decim nds p (10 ⁰)	ode), from e dec n the nal nu lace in D	X0 is the cimal third umbe of the 20 ar	s ON fourtl num d digi r) in e dec	, the h dig ber) t of t D20 cima	instr it of t in D he de Afte num	tuction tra the decim 10 to the ecimal nu r the instr ber (10 ³)	insfers al num two dig mber (ruction and th	two iber its o the c is ex ie on	digits of (the digit f the ligit in the cecuted, lies place
					M10	01			(,		_	e un	orrar	.geu.				
				_	\dashv	(M11	68										
					X0													
				-	\dashv		SMO	ov	D1	0	K	4	K	(2	D20	Ka	3	
						L												
				Г														
				Ļ									D1	10 (16	o-bit bina	ry num	ber)	
				_ ↓							↓		V	Auto	matic conv	ersion		
				Ĺ	10	3	10 ²		10 ¹	1	00		D1	0 (4-	digit bina	ary-cod	ed d	ecimal)
				ι	Inchar	iged				Uncha	nged		\downarrow	Tran	sferring the	digits		
					10	3	10 ²		10 ¹	1	00		D2	20 (4-	digit bina	ary-cod	led d	ecimal)
				Ţ										Auto	omatic conv	ersion		
													▼ D2	20 (16	6-bit bina	ry num	ber)	

•

Example 2

When M1168 is On (BIN mode), and the SMOV command is executed, D10 and D20 do not change in BCD mode, but send 4 digits as a unit in BIN mode.

API 15 BMOV	Image: Signal Distance Image: Signal Distance Image: Signal Distance
Bit device	Word device 16-bit command (7 STEP)
X Y M S U	K H KnX KnM T C D BMOV Continuous execution type BMOVP Pulse execution type
n l	* * * * 32-bit command_
Notes on operand u	Isage:
n operand scope n	Flag signal: none
Explanation •	S: Initiate source device. D: Initiate destination device. n: Send block length.
•	The content of n registers starting from the initial number of the device designated
	by S will be sent to the n registers starting from the initial number of the device
	designated by (n) ; if the number of points referred to by n exceeds the range used by that device, only points within the valid range will be sent.
Example 1	When X10=On, the content of registers D0–D3 will be sent to the four registers D20 to D23.
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
Example 2	$D3 \longrightarrow D23$) If the designated bit devices KnX KnY and KnM are sent \bigcirc and \bigcirc must
	have the same number of nibbles, which implies that n must be identical.
	M1000
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
	$\begin{array}{c} MT \\ M2 \\ M3 \end{array} \longrightarrow \begin{array}{c} Y2 \\ Y3 \end{array}$
	$\begin{array}{c c} 1014 & \hline 14 \\ \hline M5 & \hline Y5 \\ \end{array}$
	$M6 \longrightarrow Y6$ $n=3$
	M7
	M8 Y10
	M9> Y11
	M10 → Y12
	$ M11 \longrightarrow Y13 I$
Example 3	In order to prevent overlap between the transmission addresses of two operands, which would cause confusion, make sure that the addresses designated by the two operands have different sizes, as shown below:
	When $S > D$ and in the order $D > 2$
	When \bigcirc , send in the order $\bigcirc \rightarrow \bigcirc$.
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
	$\begin{array}{c} D21 \\ \hline $
	When $(S) < (D)$, send in the order $(3) \rightarrow (2) \rightarrow (1)$.
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

AF 18	ין 3 ו	D	BCD	Ρ		C	S) (D		В	IN to	BCD transformation			
	Bit	dev	ice			V	Vord	devic	е			16-bit command (5 STEP)			
	X	Y	M	К	Н	KnX	KnY	KnM	T	С	D	BCD Continuous BCDP Pulse			
S						*	*	*	*	*	*	execution type execution type			
D			<u> </u>				*	*	*	*	*	32-bit command (9 STEP)			
Not	DBCD Continuous DBCDP Pulse execution type execution type														
	Flag signal: none														
E	Explanation • S: Data source. D: Destination of data movement.														
			•	The tran	cont sform	ent o natior	f data n and	a sou save	(BIN).	l value, 0–9999) executes BCD					
			•	Arith	nmeti	c ele	ment	s S a	nd D	use	the F	device, it can only use 16-bit command.			
	Exam	ple	•	Whe is sa	en X(aved) is C in 4-l	N, ai bit ele	nd the	e BIN t of K	l valu 1Y0	ue of (Y0–	D10 is transformed to BCD value, the digit Y3).			
					×0 ┨┠──	-[BCD		D10	ł	<1Y0				
				lf D (Bl	010 = N).	001	E (He	ex) =	0030) (De	cima	I), the executed result will be Y0-Y3=0000			

AF 19))	D	BIN	Ρ		C	<u>s</u> (D		E	BCD t	o BIN tra	nsformation		
	Rif	t dev	ice			V	Vord	devic	e			16-bit co	mmand (5 STE	P)	
	X	Y	M	K	Н	KnX	KnY	KnM	Т	С	D	BIN	Continuous	BINP	Pulse
S						*	*	*	*	*	*		execution type		execution type
D							*	*	*	*	*	22 hit oo	mmand (0 STE		
Note	es or	ו oper	and u	sage:	none			DBIN	Continuous execution type	DBINP	Pulse execution type				
	Flag signal: none														
 Explanation S: Data source. Transformation result. The content of data source (BCD: 0–9,999) executes I and saves in 														BIN trar	nsformation
			•	Valio	d nun	nber	range	e of th	ne da	ta so	ource	S: BCD	(0–9,999), DE	3CD (0-	-99,999,999).
E	Exam	nple	•	Whe resu	en X(ilt sav) is (ves ir	DN, a n D10	nd th	e BC	D v	alue	of K1X20	0 is transform	ied to B	BIN value, the
				_``	<0 	-	BIN	K1	I X20	[010]			
	Rem	ark	•	Whe com	en Pl Iman	_C re d to t	ads a ransf	a BCI orm ti	D typ he re	e sv ad d	vitch- ata to	off from b BIN val	the outside, i ue, then save	t has to s the va	o use the BIN alue into PLC.

AF 20	ין) נ		٩DD	Ρ		(S1)	(S2		\mathbf{D}	В	IN ad	dition
	Rit	dev	ice			v	Vord	devic	e			16-bit command (7 STEP)
	X	Y	M	К	Н	KnX	KnY	KnM	/ С Т	С	D	ADD Continuous ADDP Pulse
S1				*	*	*	*	*	*	*	*	execution type execution type
S2				*	*	*	*	*	*	*	*	22 hit command (42 CTED)
D							*	*	*	*	*	<u>32-Dit command</u> (13 STEP)
Not	es on	oper	and u	sage:	none							execution type execution type
												Flag signal: M1020 Zero flag M1021 Borrow flag M1022 Carry flag Please refer to the following supplementary explanation
Explanation • S1: Augend, S2: Addend, D: Sum.												Sum
 Using two data sources: The result of adding S1 and S2 using the method will be stored in D. The highest bit of any data is symbolized as bit 0 indicating (positive) 1 in (negative), enabling the use of algebraic addition operations. (for instanc =-6) Flag changes connected with the addition. 												
				1 V	Vhor	calc	ulatio	n reg	sulte	are () the	zero flag M1020 will be On
				2. V 2. V 3. V	Vher Dn. Vher	calc calc	ulatio ulatio	on rea	sults	are l are (great	han –32,768, the borrow flag M1021 will be er than 32,767, the carry flag M1022 will be
E	Exam	ple	•	16-k	bit Bl	N ad of au	ditior gend	n: Wh D10	ien X will e	0=Oi exist	n, the in the	e result of the content of addend D0 plus the content of D20.
								- A[DD	D0	D1	0 D20
	Rema	ark	•	Rela 16-b	ation bit:	ship l	betwo	een f	lag a	ction	s and	I negative/positive numbers:
					Z	ero fl	aq				Zero	flag Zero flag
				-2, B	-1,	0 , -: w flag	32,76	58 ← Fhe hi he da	ighes ita = 1	t bit o (neg	-1, (of gative	0, 1 \longrightarrow 32,767, 0, 1, 2 The highest bit of the data = 0 (positive) Carry flag
				32-	bit:							
					Z	ero fl	ag				Zer	o flag Zero flag
				-2, ▼	, -1,	0, -2	,147,	483,6	648 ◀	R	-1,	0, 1
				E	Borro	w flag	g 1 t	⁻ he hi he da	ghest ta = 1	t bit o (neg	f jative	The highest bit of Carry flag the data = 0 (positive)

AP 21	l D	S	UB	Ρ		(S1)	(S2		\mathbf{D}	BI	N su	ubtraction			
	Bit	devid	e			V	Vord	devic	e			16-bit command (7 STEP)			
S1	X	Y	M	K *	H *	KnX *	KnY *	KnM *	T *	C *	D *	SUB Continuous SUBP Pulse execution type execution type execution type			
S2				*	*	*	*	*	*	*	*				
D							*	*	*	*	*	<u>32-bit command</u> (13 STEP)			
Note	es on o	opera	nd us	sage:	none							DSUB execution type DSUBP execution type			
	Flag signal: M1020 Zero flag M1021 Borrow flag M1022 Carry flag Please refer to the following supplementary explanation														
Ex	 S1: Minuend. S2: Subtrahend. D: Difference. Using two data sources: The result of subtraction of S1 and S2 using the BIN method is stored in D. The highest bit of any data is symbolized as bit 0 indicating (positive) 1 indicating (negative), enabling the use of algebraic subtraction operations. Flag changes connected with subtraction. 														
				1. V 2. V 3. V	Vhen Vhen)n. Vhen)n.	calc calc calc	ulatic ulatic ulatic	on res on res	sults ai sults a sults a	re 0 re le re g	, the ess t reate	e zero flag M1020 will be On. than –32,768, the borrow flag M1021 will be ter than 32,767, the carry flag M1022 will be			
E	 Superior Calculation results are greater than 32,767, the carry flag M1022 will be On. Example 16-bit BIN subtraction: When X0=On, the content of D10 is subtracted from the content of D0, and the difference is stored in D20. X0 SUB D0 D10 D20 														

D0

MUL

D10

K8M0

AF 23) }	D	DIV	Ρ		S 1	(S2		\mathbf{D}	E	BIN di	vision			
	Bit	t dev	ice			V	Vord	devic	е			16-bit co	mmand_(7 STE	P)	
	Х	Y	M	K	Н	KnX	KnY	KnM	Т	С	D	DIV	Continuous	DIVP	Pulse
S1				*	*	*	*	*	*	*	*		execution type		execution type
S2				*	*	*	*	*	*	*	*				
D							*	*	*	*	*	<u>32-bit col</u>	<u>mmand</u> (13 ST	<u>=P)</u>	<u> </u>
Not	Notes on operand usage: The 16 bit command energed D will ecoupy 2 consecutive points Execution type execution type executio														
The	The 16-bit command operand D will occupy 2 consecutive points														
	Flag signal: none														
E	Explanation • S1: Dividend. S2: Divisor. D: Quotient and remainder.														
\subseteq	• Using two data sources: The quotient and remainder will be stored in D when														
				(S1	ົ່ງລາ	d (S	2) _		hiacte	d to	divie	ion usin	n the BIN met	thod Th	he sign hit for
							_ a		ojecie			ion using		ulou. H	le sign bit loi
				(51), C	2 2	and (ע	must	be l	kept ii	n mind w	hen performir	ng a 16-	bit operation.
			16-	bit B	N div	/ision	1:								
											Q	uotient	Remaind	der	
				S	1)			(S2)		(D		⊦1	
											\sim				
			b1	5	b0	1	b15	5	b0		b31	b16	b15b(0	

=

If \bigcirc is a bit device, K1–K4 can be designated 16 bits, which will occupy 2 consecutive units and yield the quotient and remainder.

Example

•

When X0=On, the quotient resulting from division of dividend D0 by divisor D10 will be placed in D20, and the remainder will be placed in D21. Whether the highest bit is Off or On will indicate the sign of the result.

1

AF 24	PI D INC P D										IN ac	ld one			
	Bit	dev	ice			V	Vord	devic	е			16-bit co	mmand (3 STE	P)	
	Х	Υ	М	K	Н	KnX	KnY	KnM	Т	С	D	INC	Continuous	INCP	Pulse
D							*	*	*	*	*	ļ	execution type	L	execution type
Not	es on	oper	and u	sage:	none				32-bit co	mmand (5 STE	P)				
										DINC	Continuous	DINCP	Pulse		
								L	execution type		execution type				
	Flag signal: none														
E	Explanation \bullet D: Destination device.														
\subseteq			•	lf a	comr	nand	is no	t the p	pulse	exe	cutior	ו type, w	hen the comr	nand is	executed, the
				prog	gram	will a	dd 1	to the	e con	tent	of de	vice 🕒	\bigcirc for each so	canning	cycle.
			•	This	s com	nmano	d is o	rdina	rily u	sed a	as a p	oulse exe	ecution type c	omman	d (INCP).
			•	Duri ope	ing 1 ratior	6-bit (า, 2,1	opera 47,48	ation, 33,64 ⁻	32,7 7 +1	67 + [.] will c	1 will hang	change e the va	the value to - lue to -2,147,	32,768. 483,648	During 32 bit 3.
[operation, 2,147,483,647 +1 will change the value to -2,147,483,648. • When X0=Off \rightarrow On, 1 is automatically added to the content of D0. NOP D0														

AF 2{	רי 5	D	D	EC	Ρ			D)		E	BIN su	btract on	e		
	B	it d	evid	e			V	/ord	devic	e			16-bit cor	nmand (3 STE	P)	
	X	<u>``</u> `	Y	M	K	Н	KnX	KnY	KnM	T	С	D	DEC	Continuous	DECP	Pulse
D					*	*	*	*	*					execution type		execution type
Not	es o	on op	bera	nd us	age:	none							32-bit cor	nmand (5 STE	P)	1
											DDEC	Continuous	DDECP	Pulse		
	execution type execution type															
	Flag signal: none															
E	 D: Destination device. If a command is not the pulse execution type, when the command is executed, th program will add 1 to the content of device D for each scanning cycle. 														executed, the cycle.	
				•	This	com	ıman	d is d	ordina	arily us	sec	d as a	pulse ex	ecution type of	commar	nd (DECP).
				•	Duri 32 b	ing 1 bit op	6-bit eratio	oper on, -2	ation 2,147	, -32,7 ,483,6	'68 48	3 minu 3 minu	s 1 will o s 1 will c	change the va hange the val	lue to 3 ue to -2	2,767. During ,147,483,647.
E	Exa	mple	e	•	Whe	en X(X0)=Off	-→Or	n, 1 is P	auton	na	tically	subtract	ed from the co	ontent o	f D0.

AF 4()	Z	RST	P		(D1) (D2)		С	ear r	ange	Э				
	Dit	dev	ice	-		١٨	lord	devie	<u>م</u>			16	vit occ	morel	(F OTT		i
	Х	Y	M	К	н	KnX	KnY	KnM	е Т	С	D	<u>16-0</u> ZF	RST	nmand Con	(5STE	ZRSTP	Pulse
D1		*	*						*	*	*	L		execu	ition type		execution type
D2 Not	<u> </u>	*		2000.					*	*	*	32-h	oit com	mand			1
Nur	nber o	oper of ope	erand	D₁ op	erand	≤ nun	nber o	f opera	and D	2			-	Intaria	<u> </u>	—	
Ope	erand	s D ₁ ,	D ₂ mu	ist des	signat	e the s	same	type of	fdevio	ce shaday							
seri	ase re es for	the s	o ine i scope	of dev	n spe /ice u	ecilica sade	lions	lable I	oread	n dev	nce in	гад	signa	I. NONE	5		
E	nlan	ation) •	D ₁ :	Clea	ar rar	iges	initial	devi	ce. I	D ₂: Cl	ear	range	es fin	al devic	e.	
((pluin			\//h	on t	ho n	umba	ar of	oner	bne	o, >	nur	nhor	ofo	nerand		, the operand
			•	des	signa	ited b	by D_2	will b	e cle	eared	U1 >	nui	IDCI	01.0	peranu	D_2 , Only	
	Evam	nlo	•	Whe	en X() is C)n, ai	uxiliar	y rel	ays I	/300·	-M3	99 w	ill be	cleared	and cha	anged to Off.
	ZXaIII		●	Whe	en X	1 is C)n, 16	6-bit c	count	ers (C0-C	127	will a	all be	cleared	. (Writes	0, and clears
			-	and	chai	nges	conta	act ar	id co	il to	Off).					•	
			•	VVhe	en X	10 is	On,	time	r IO-	-112 Off)	/ WI	I all	be c	cleare	ed. (VVrit	es 0, a	nd clears and
			•	Whe	nges n X'	3 is C	acia In th	e dat	וו נט in מ	data.	reaist	ters	ם_0_	100	will be a	leared	and set as 0
			•	••••				X0	u iii v	aata							
							_				ZF	RST	M	300	M399		
								X1							I	_	
											ZF	RST		C0	C127		
								X10			<u> </u>				!		
							_				ZF	RST	ר	Г0	T127		
								X3									
								-11			ZF	RST	1	D0	D100		
_				Day				ممطم	method u								
	Rema	ark		and	wor	d dev	naep ice T	ende C C	nuy u N	ise u	ie cie	earc	omn	iana ((RST), S	such as i	
<u> </u>				and	WOI	ucv		, 0, L X0	<i>.</i>			г				1	
							ŀ	⊣⊢					RS	т	M0		
												-				J 7	
												_	RS	т	Т0		
												L				1	
												_	RS	т	Y0		
												_				-	

b0

D20

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 b15

D20

b0

b15

API 43 D SUM P SD											N bit	number			
	Bi	t de	vice			V	Vord	devic	e			16-bit cor	nmand (5 STE	P)	
	X	Y	M	K	Н	KnX	KnY	KnM	T	С	D	SUM	Continuous	SUMP	Pulse
S				*	*	*	*	*	*	*	*	l	execution type		execution type
D									*	*	*	100 L 11			1
Note	es oi	n ope	rand u	sage:	none							32-bit cor	mmand (9 STEP)		
												DSOM	Continuous	DSUMP	Pulse
												L	execution type		execution type
										Flag signa	al: M1020				
(E)	 Explanation S: Source device. D: Destination of saving counter values. The total amount of all digits that is "1" in S will be saved in D. D will use 2 registers when use the 32-bit command. Arithmetic elements S and D use F device, and can only use 16-bit command. If there is no bit is ON, the flag signal M1020 will be ON. When M200 = On, the total amount of content "1" digit in D0's 16-bit command will be saved in D2. 														
					00	_[SU	м	D()	D	2			
			L	0	0	0	1 () [1		D0	00			D2

AF 44	ין ג כ) E	BON	Ρ	(S	D	$) \subset$	n	0	N bit	judgeme	ent		
	Bit	dev	ice			٧	Vord	devic	е			16-bit cor	mmand (7 ST	EP)	
	X	Y	M	К	Н	KnX	KnY	KnM	T	С	D	BON	Continuous	BONP	Pulse
S				*	*	*	*	*	*	*	*		execution typ	Э	execution type
D		*	*						*	*	*	-			1
n				*	*							<u>32-bit cor</u>	<u>mmand (9 STE</u>	<u>P)</u>	
Note	es on	oper	and us	sage:	none	1						DBON	Continuous	DBONP	Pulse
		•		0								L	execution typ	e	execution type
												Flag signa	al: none		
E	 Explanation Source device. D: Destination of saving judging result. : assign judged digit (numbering from 0) The status of specific digit from source device is shown on target position. Arithmetic element S uses F device, and can only use the 16-bit command. The valid range of arithmetic element n: n = 0–15 (16-bit), n = 0–31 (32-bit). When X0 = On, if the 15th digit of D0 is "1", M0 is On. If it is "0", M0 is Off. When X0 turns to Off, M0 remains previous status. 														
							B	ON		D0		M0	K15		
			I	b15		-								b0	
			[0	0	0 1	0	0	1	0	0	0 0	0 0 1	0 0	M0=Off
										D) _			_	
			_	b15		_								b0	
				1	0	0 1	0	0	1	0	0	0 0	0 0 1	0 0	M0=On
										D	C				

AF 49	21 2	D	F	LT	Ρ		C	<u>s</u>)(D)		B tr	IN w ansfo	hole num ormation	ber \rightarrow binary	decimal	
	Bi	it de	evi	ce			V	Vord	devic	e			16-bit cor	mmand (5 STEP)		
	Х	Y	1	М	K	Н	KnX	KnY	KnM	Т	С	D	FLT	Continuous	FLTP	Pulse
S		*	۲	*						*	*	*		execution type		execution type
D		*	۲	*						*	*	*				1
Notes on operand usage: Please refer to the function																
spe	specifications table for each device in series for the scope of DFLT Continuous DFLTP Pulse															
dev	pecifications table for each device in series for the scope of execution type execution type execution type															
The	Jevice usage The operand D will occupy 2 consecutive points												Flag signa	al: none		
E	opla	natio	on	•	S : T	rans	forma	ation	sour	ce de	vice	e. D :	Device st	oring transfor	mation r	esults.
				•	Tra	nsfor	ms B	IN w	hole	numb	oer i	nto a	binary de	ecimal value.		
	Exar	nple	•	•	Whe D1	en M into f	200 i Ioatir	s On ıg po	, con int nu	verts Imbe	the rs, v	whol vhich	e number are place	⁻ of values cor ed in D20 and	respond D21.	ling to D0 and

X11			
-11	DFLT	D0	D20

API 110 D ECMP	P	S1 S2		D	Co	ompa	rison of l	pinary floati	ng point r	numbers
Bit device		Word	devic	e			16-bit com	nmand		1
XYM	КН	KnX KnY	KnM	T	С	D	_	_	-	
S1	* *					*	L			-±i
S2	* *					*	32-bit con	<u>113 ST (13 ST</u>	EP)	
D	* *					*	DECMP	Continuous	DECMP	Pulse
The operand D occu Please refer to the f series for the scope	pies three of unction spe of device u	consecutive ecifications sage	points table f	or eac	h dev	ice in	Flag signa	l: none	<u>₹ </u>	
Explanation	S ₁ : Corr floating points.	parison c point num	of bina nbers	ary flo value	ating 2. D	poin): Re	t number sults of c	rs value 1. S omparison,	₂: Compa occupies	arison of binary 3 consecutive
•	When b point nu	inary float Imber 2, t	ting p he re	oint n sult o	umb f con	er 1 i npari	s compai son (>, =	red with con , <) will be e	nparative expresse	binary floating d in D .
•	If the s o transfor compar	ource op m the co ison.	erano onstai	d S ₁ c nt to	or S₂ a bi	desi nary	gnates a floating-	constant K point numb	or H, the per for th	command will ne purpose of
Example	When the	ne design	ated	device	e is N	<i>I</i> 10,	it will aut	omatically o	оссиру М	10–M12.
•	When X When X in the X	(0=On, the (0=Off, the 0=Off sta	e DE(e DE(te.	CMP (CMP (comr comr	nanc nanc	l execute I will not	s, and one o execute, an	of M10–N d M10–N	/12 will be On. 112 will remain
•	lf result parallel	s in the fo connectio	orm of	^F ≥, ≤, M10–	or ≠ M12	are I	needed, t	hey can be:	obtained	l by series and
•	Please	use the R	ST o	r ZRS	Т со	mma	nd to cle	ar the resul	t.	
	×0	M10 M11 M11 M12	ECMF		D0 wher wher	(D1 n (D1 n (D1)100 , D0) > (I , D0) = (I	M10 D101, D100 D101, D100 D101, D100))))	

AP 111		DE	ZCP	Ρ	3		<u>8</u> 2) (S	Ð	Со	mpa	irison of	f binary flo	pating	g point	numbe	er range
	Bit	dev	vice			V	Vord	devic	e			40.1.1					1
	Х	Y	M	K	Н	KnX	KnY	KnM	Т	С	D	<u>16-bit cc</u>	<u>mmand</u>		_	1	
S1				*	*						*	L				<u></u>	l
S2 ©				*	*						*	32-bit cc	ommand (17	STEF	P)		1
D		*	*									DEZCP	Continu	ous	DEZC	P F	vulse
Note	s on	opei	rand us	sage:			1	1				L	execution	i type	Р	execu	ition type
The	oper	and I	D occu	pies t	hree o	consec	cutive	points				Flag sigr	nal: none				
Plea	se re	eter t r the	o the t scone	unction of dev	on spe vice ut	ecifica sade	tions t	able f	or eac	h devi	ce in						
Ex	plan	ation		S ₁: limi floa poi	Low it of t ating nts.	ver lir pinary point	nit of / floa [:] : num	[:] bina ting p erica	ary flo point r I valu	oating numbo les. D	poi er in : Re	nt numb range o sults of	per in ran compariso compariso	ge co on. S : on, o	ompar Comp ccupie	ison. S parison es 3 con	2: Upper of binary secutive
			•	Coi nur the	mpai nber rest	rison [·] lowe ults of	of bi er limi f com	nary It valu Iparis	floati ue S ₁ son ai	ng po and b re exp	oint oinai ores	numeric ry floatir sed in D	al value (ng point ni) .	S with umbe	h bina er uppe	ry floati er limit v	ing point value S₂ ;
			•	lf ti trar cor	he s o nsfor npar	ource m th ison.	e ope e co	e ranc nstar	d S ₁ c nt to	or S₂ (a bir	desi nary	gnates a floating	a constan g-point nu	t K ol umbe	r H, th r for	e comn the pui	nand will rpose of
			•	Wh bin with valu	ien th ary fl h the ue S	ne lov loatin e uppo 1.	ver lii g poi er an	mit bi nt nu d lov	nary mber ver lir	floatir ⁻ S ₂, a nits u	ng po cor sing	oint num nmand v the bin	nber S 1 is will be iss ary floatir	great ued to ng po	er tha o perfo int nur	n the up orm cor mber lo	oper limit nparison wer limit
E	kam	ple	•	Wh	en tl	he de	signa	ated	devic	e is N	10, it	will aut	omatically	у осс	иру М	0–M2.	
)	•	Wh On in t	ien X . Wh he X	(0=0 en X(0=0f	n, the)=Off f stat	e DEZ , the e.	ZCP (EZCI	comm > com	and Imai	will be nd will n	executed, ot execute	, and e, and	one o d M0–l	f M0–M M2 will	l2 will be continue
			•	Ple	ase	use t	he R	ST oi	ZRS	ST cor	nma	ind to cl	lear the re	esult.			
					X0		[_					1]		
					- +			EZCF)	D0		D10	D20	N	/10		
						ז ז	M0 		ON	when	(D ²	, D0) >	(D21, D2	20)	(D11	ח10)	
						1	 M2 		ON	when	(D2	21, D20) > (D11,	D10)	(,	,	

API D DEG P S D											iamet	$er \rightarrow ang$	gle		
	Bi	t de	vice			V	Vord	devic	e			16-bit con	nmand		
	Х	Y	M	K	Н	KnX	KnY	KnM	Т	С	D	—	_	—	_
S				*	*						*				1
D											*	32-bit con	<u>nmand</u> (9 STE	P)	
Pleas	s or se r	n ope efer	to the f	sage: unction	on spe vice ut	ecifica	tions t	able f	or eac	h de	vice in	DDEG	execution type	DDEGP	Pulse execution type
50110	5 10		Soope			Suge						Flag signa	al: none		
Exp	 S: data source (diameter). D: results of transformation (angle). Uses the following formula to convert radians to an angle 														
			•	Us	es th	e foll	owinę	g forr	nula	to co	onvert	radians	to an angle.		
	• Angle = Diameter × (180/ π)														
Ex	am	ple)•	Wh rad cor	ien X lians nsisti	(0=O will k ng of	n, an be co a bir	ngle c Invert nary f	of the ted to loatir	des an ng po	ignat angle pint n	ed binary and sto umber.	y floating poir red in (D11, I	nt numb D10), wi	er (D1, D0) in th the content
					<0 	-[[DDEC	6	D0		D10]			
				S		D1		D	0	A B	ngle inary	in radia floating	ins g point		
						D1	1	D	10	A B	ngle inary	in degre floating	ees = radia g point	ns X (1	80/π)

AP 120) D	E	ADD)		S 1	<u>(S2</u>		D	Ac	dding	binary fl	oating point r	numbers	
	Bit	dev	ice			V	Vord	devic	e			16-bit cor	nmand]
	X	Y	M	Κ	Н	KnX	KnY	KnM	T	С	D	—	—	-	_
S1				*	*						*				
S2				*	*						*	<u>32-bit cor</u>	<u>nmand</u> (9 STE	.P)	
D											*	DEADD	Continuous	DEADDP	Pulse
Pleas	s on o se rei s for	fer to the s	o the scope	function of dev	on spe /ice u	ecifica sage	tions f	table f	or eac	h dev	ice in	LFlag signa	al: none	1	execution type
Explanation • S ₁ : addend. S ₂ : augend. D: sum.															
			•	Wh reg Ad	ien tł ister ditior	ne co desig n is p	onten gnate erfori	t of th ed by med e	ne reę S ₁, a entire	gister Ind th ely us	r des le res ing b	ignated b sult is sto inary floa	by S₂ is adde bred in the reg ating-point nu	d to the jister des imbers.	content of the signated by D .
			•	lf t trai	he s o nsfor	ourc m tha	e op e at cor	erano nstan	d S ₁ d t into	or S₂ a bir	desi nary f	gnates a floating p	constant K c point number	or H, the for use i	command will n addition.
			•	In "co the cor	the ntinu regi mmai	situa ious ster nds (ation exec will p DEAI	whe ution perfor DDP)	en S ₁ " con m ac	nmar Iditio gene	l S ₂ nd is n ono rally	designat employe ce during used und	te identical r d, when con g each scan. der ordinary c	egister i ditional o Pulse e circumsta	numbers, if a contact is On, xecution type ances.
E>	amp	le	•	Wh floa	ien X ating	(0=O point	n, a l t num	binar ber (y floa D3, I	nting D2), a	point and tl	number ne result	(D1, D0) wil s stored in (D	l be add 011, D10)	ed to a binary).
					×0 ┣──	D	EADI	D	D0		D2	D10			
			•	Wh (wh the	ien X nich I resu	(2 =C nas b ilts st)n, a been tored	binar autor in (D	y floa natic 021, E	ating ally c 020).	point onve	number erted to a	(D11, D10) v binary floati	vill be ad ng-point	ded to K1234 number), and

X2				
	DEADD	D10	K1234	D20
1				

AF 12	יו 1	DE	SUB	P		S 1	<u>S2</u>		D	Sı	ubtra	ction of b	inary floating	point nu	mbers
	Bi	t dev	ice			V	Vord	devic	e			16-bit con	nmand		
	X	Y	M	K	Н	KnX	KnY	KnM	T	С	D		_	—	
S1	S1 * * S2 * * D														
S2	S2 * * D										*	<u>32-bit con</u>	<u>nmand</u> (13 ST	EP)	
D Notes on operand usage:									*	DESUB	Continuous	DESUBP	Pulse		
Not	es or	n oper	and us	sage:		ooifioo	tiona t	oblo f	or oach	day	vice in	L	execution type	<u> </u>	execution type
series for the scope of device usage										ice in	Flag signa	II: none			
 S₁: minuend. S₂: subtrahend. D: difference. When the content of the register designated by S₂ is subtracted from the content of the register designated by S₁, the difference will be stored in the register designated by D; subtraction is performed entirely using binary floating-point numbers. 															
			•	lf t trai	he s nsfor	ourc m tha	e ope at cor	e rano nstan	d S ₁ oi t into a	r S₂ a bii	desig nary	gnates a floating p	constant K o point number	r H, the o for use ir	command will subtraction.
 In the situation when S₁ and S₂ designate identical register numbers, if a "continuous execution" command is employed, when conditional contact is On the register will perform addition once during each scan. Pulse execution type commands (DESUBP) are generally used under ordinary circumstances. 															
	Exar	nple)•	Wh bin	ien) ary f	<0=O loatir	n, a Ig poi	binaı int nu	ry floa ımber	iting (D3	poir , D2)	it numbe , and the	er (D1, D0) w e results store	rill be su d in (D1′	btracted to a 1, D10).

	DESUB	D0	D2	D10
I '				

• When X2 =On, the binary floating point number (D1, D0) will be subtracted from K1234 (which has been automatically converted to a binary floating-point number), and the results stored in (D11, D10).
API 122) E	MUL	P		<u>S1</u>	<u>S2</u>		D	Multiplication of binary floating point numbers						
Bit	dev	ice			V	Vord	devic	e			16-bit cor	mmand			
X	Y	M	K	Н	KnX	KnY	KnM	T	С	D	_				
S1			*	*						*					
S2			*	*						*	32-bit cor	<u>mmand (</u> 13 STEP)			
D										*	DEMUL	Continuous DEMULP Pulse			
Notes on Please re series for	Notes on operand usage:														
Explana	Explanation • S ₁ : multiplicand. S ₂ : multiplier. D: product.														
	 When the content of the register designated by S₁ is multiplied by the content the register designated by S₂, the product will be stored in the register designate by D; multiplication is performed entirely using binary floating-point numbers. 														
	• If the source operand S_1 or S_2 designates a constant K or H, the command transform that constant into a binary floating point number for use in multiplication.														
		•	In "co the typ	the ntinu regi e coi	situa ious ister mma	ation exec will p nds (whe ution perfor DEM	en S ₁ " con m m ULP)	nmar ultipli are	l S₂ nd is icatio gene	designa employe n once o rally use	te identical register numbers, if a ed, when conditional contact is On, during each scan. Pulse execution ed under ordinary circumstances.			
Exam	• When X1=On, the binary floating point number (D1, D0) will be multiplied by binary floating point number (D11, D10), and the product will be stored in register designated by (D21, D20).														
				<1 ┣──	D	EMU	L	D0		010	D20				
 When X2 =On, the binary floating point number (D1, D0) will be multiplied from K1234 (which has been automatically converted to a binary floating-poin number), and the results stored in (D11, D10). 															

		DEMUL	K1234	D0	D10
--	--	-------	-------	----	-----

AF 12	'l 3 I	DE	DIV	P		<u>S1</u>	<u>(S2</u>		Ð	Division of binary floating point numbers							
	Bit	devi	ice			V	Vord	devic	е			16-bit command					
	Х	Y	М	K	Н	KnX KnY KnM T C D — —						—	—				
S1				*	*						*						
S2				*	*						*	32-bit cor	<u>nmand (</u> 13 STEF	P)			
D											*	DEDIV	Continuous	DEDIVP	Pulse		
Note	es on	opera	and u	sage:								L	execution type		execution type		
Plea serie	Please refer to the function specifications table for each device in series for the scope of device usage Flag signal: none																
Ex	plan	ation	•	S₁:	divi	dend	. S ₂: (divisc	or. D : q	uot	ient a	and rema	ainder.				
	-)	•	Wł reg D;	nen t gister divis	he co ⁻ desi ion is	onten gnate s perf	t of th ed by orme	e regis S₂ , the d entir	ster e qu ely	⁻ desi uotier usinę	gnated b nt will be g binary	by S ₁ is divided stored in the i floating-point	d by the register number	content of the designated by s.		
	 If the source operand S₁ or S₂ designates a constant K or H, the command will transform that constant into a binary floating point number for use in division. 																
	• When X1=On, the binary floating point number (D1, D0) will be divided by the binary floating point number (D11, D10), and the quotient stored in the register																

IV D0	D10	D20

designated by (D21, D20).

• When X2=On, the binary floating point number (D1, D0) will be divided by K1,234 (which has been automatically converted to a binary floating-point number), and the results stored in (D11, D10).

I X2				
- -	DEDIV	D0	K1234	D10
l				

API 124 D EXP	Ρ		C	S) (D		Bi	nary	floating	point number	obtain e	exponent	
Bit device			V	/ord	devic	e			16-bit cor	mmand]	
X Y M	K	Н	KnX	KnY	KnM	Т	С	D					
S	*	*						*	32 hit cor	mmand (0 STED)	·	1	
Notes on operand u Please refer to the series for the scope	sage: functic of dev	on spe vice us	ecificat sage	tions t	able f	or ead	ch dev	vice in	DEXP	Continuous execution type	DEXPP	Pulse execution type	
Flag signal: none													
Explanation • S: operation source device. D: operation results device.													
• Taking e =2.71828 as a base, S is the exponent in the EXP operation.													
• [D+1, D]=EXP[S+1, S]													
•	Valio desi usin num	d reg gnat g floa iber.	ardle ed re ating·	ess of giste -poin	f whe r D n t num	ther nust l nbers	the c have s, and	onter a 32· I S m	nt of S ha bit data ust there	as a positive o format. This o fore be conve	or negat operation erted to a	ive value. The n is performed a floating point	
•	Con	tent	of op	eran	d D =	e ^s ;	e=2.	7182	8, S is th	e designated	source	data	
Example	Whe num	en M iber,	0 is C whic	Dn, th h will	ie va be s	lue o torec	f (D1 I in re	, D0) egiste	will be c r (D11, [converted to a D10).	binary	floating point	
•	Whe its v	en M alue	1 is (is a l	On, tl pinar	ne EX y floa	KP oj iting	perat point	ion is num	perform	ned on the ex ed in register (ponent (D21, D2	of (D11, D10); 20).	
				M 	0				[DFLT D0	D10 0 D20]	

END

API 125		D	LN	Ρ		C	s (D		Bi	nary	loating point number obtain l	ogarithm	
	Bit	dev	ice			V	Vord	devic	e			16-bit command		
	X	Y	M	K	Н	KnX	KnY	KnM	T	С	D			
S				*	*						*		1	
D			<u> </u>								*	<u>32-bit command (9 STEP)</u>		
Notes	son	oper	and u	sage:			4: I	habla f		ر ما ما		DLN Continuous DLNP	Pulse	
Pleas	s foi	r the s	o ine scope	of dev	n spe /ice u	ecilica sade	lions	lable I	oread	n dev	ice in		execution type	
Series	5 101		Joope	order		bage						Flag signal: none		
Exp	lan	ation		S : 0	pera	tion s	sourc	e dev	/ice.	D : op	perati	on results device.		
	 Taking e =2.71828 as a base, S is the exponent in the EXP operation. 													
	• [D +1, D]=EXP[S +1, S]													
	 Valid regardless of whether the content of S has a positive or negative value. The designated register D must have a 32-bit data format. This operation is performed using floating-point numbers, and S must therefore be converted to a floating point number. 													
			•	Con	tent	of op	eran	d D =	e ^s ;	e=2.	7182	³ , S is the designated sour	ce data	
E:	xan	nple)•	Whe num	en M iber,	0 is (whic	Dn, tl h will	he va l be s	lue c torec	of (D1 I in re	I, D0 egiste	will be converted to a binar r (D11, D10).	y floating point	
 When M1 is On, the EXP operation is performed on the exponent of (D11, D10 its value is a binary floating point number stored in register (D21, D20). M0 DFLT D0 D10 M1 DLN D10 D20 												of (D11, D10); 20).		
												END		

AP	API D ESQR P Image: Signal point number find square root														
	Bit	devi	се			v	Vord	devic	e			16-bit command			
	X	Y	M	K	Н	KnX	KnY	KnM	Т	С	D	_		_	
S				*	*						*				
D											*	32-bit con	<u>nmand (</u> 9 STEP))	
Note Plea	Notes on operand usage: DESQR Continuous DESQR Pulse Please refer to the function specifications table for each device in series for the scope of device usage Pulse Pulse Pulse														
serie	Flag signal: none														
Ex	S : source device for which square root is desired D : result of finding square root.														
	 When the square root is taken of the content of the register designated by S, the result is temporarily stored in the register designated by D. Taking square roots is performed entirely using binary floating-point numbers. 														
	 If the source operand S refers to a constant K or H, the command will transform that constant into a binary floating point number for use in the operation. 													will transform ation.	
E	• When X0=On, the square root is taken of the binary floating point number (D1, D0), and the result is stored in the register designated by (D11, D10).													number (D1, 0).	
	X0 DESQR D0 D10														

√(D1 · D0) →	(D11 · D10)
Binary floating point	Binary floating point

• When X2 =On, the square root is taken of K1,234 (which has been automatically converted to a binary floating-point number), and the results stored in (D11, D10).

X2			
	DESQR	K1234	D10
1			

APIINTP129DINTP									Bi tra	Binary floating point number \rightarrow BIN whole number transformation						
	Bit device Word device											16-bit command (5 STEP)				
S	Х	Y	M	K	Н	KnX	KnY	KnM	Т	С	D *	INT	Continuous execution type	INTP	Pulse execution type	
D Note	s on c	perar	nd usa	de.							*	32-bit cor	nmand (9 STE	P)		
Please refer to the function specifications table for each device in DINT Continuous DINTP Puls series for the scope of device usage execution type												Pulse execution type				
Flag signal: none																
E	plana	ation	•	S : th	e so	urce	devid	ce to	be tra	ansfo	orme	d. D : resi	ults of transfo	rmation.		
	 The content of the register designated by S is transformed from a binary floating point number format into a BIN whole number, and is temporarily stored in D. The BIN whole number floating point number will be discarded. 														inary floating red in D . The	
	 The action of this command is the opposite of that of command API 49 (FLT). 															

Example

 When X0=On, the binary floating point number (D1, D0) is transformed into a BIN whole number, and the result is stored in (D10); the BIN whole number floating point number will be discarded.

т Х	0					
				DINT	D0	D10
			'			
						FND

AP 13	PI 31 D COS P S D										Bina	ſ y '	floating p	point number	COS op	eration
	Bit	dev	ice			V	Vord	devic	e				16-bit con	nmand		
	Х	Y	Μ	K	Н	KnX	KnY	KnM	Т	С	; <u> </u>)	_	<u> </u>		
S				*	*						*		32-bit con	nmand (9 STFP))	
Note	es on d	pera	nd usa	age:					<u> </u>				DCOS	Continuous	DCOSP	Pulse
Plea	ise ref	er to	the fu	inctio	n spe	cificat	ions ta	able fo	or each	n d	evice	in		execution type		execution type
sene	es lor i	ne so	cope o	aevi	ce us	age							Flag signa	al: none		
Ex	olana	tion	•	S : 1	the c	lesigi	natec	l sou	rce va	alu	e. D :	th	e COS v	/alue result.		
			•	The by	e sou flag	urce M101	desig 18.	Inate	d by \$	So	can b	e	given as	radians or a	n angle;	this is decided
			•	Wh is e	nen N equa	/1018 I to (a	8=Of angle	f, the ×π/1	opera 80).	atic	on is	in	radians r	node, where t	the radia	ns (RAD) value
			•	Wh 0°≤	nen N ≤ ang	/101 Jle <3	8=Or 860°.	n, the	oper	ati	on is	in	the ang	le mode, whe	ere the a	ngular range is
			•	Wh	nen c	alcul	ation	resu	lts yie	eld	0, M	10	20=On.			
			•	Th	e CC)S ob	taine	d fro	m the	s	ource	e v	alue des	ignated by S	is stored	d in D .
				The	e follo	owing	g figu	re dis	splays	s th	ne re	lat	ionship t	petween the a	irc and S	SIN results:
									R			Ş	6: Radiar	ı		
												F	R: Result	(COS value)		
							~~~~			~~~				~~~~~		
						$\backslash$		/			<b>\</b>					
					-2 π	3	<u>-</u> 2π	$\frac{\pi}{2}$	0	1	<u></u>	π	$\frac{3}{\pi}$	→ S		
					-2 /	2	-2 /	/ 2			2	$\sum_{n}^{n}$	$\int_{2}^{\pi}$	2		
									-1							
E	xamp	e	•	Wh D0 floa	nen λ ) in r ating	⟨0=O adiar poin	n, the ns wi t num	e CO II be : nber.	S val stored	ue d ir	of th n (D1	ne  1,	designat D10), w	ted binary floa ith the conter	ating poi nt consis	int number (D1, sting of a binary
				(0			208		0							
							.05		0							
			<u>(</u>		D	1	 	D 0	RA Bir	\D har	value ry floa	ə ( ati	angle X 7 ng point	τ / 180)		
				) [	D	1		0 10	CC Bir	)S nar	valu ry flo	e ati	ng point			

AF 13	יו 2 <b>כ</b>	)	ΓAN	Ρ		C	S (	D		Bi	inary	floating	point number	TAN op	eration
	Bit	dev	ice			V	Vord	devic	<u>ک</u>			16-bit cor	 mmand		
	X	Y	M	K	Н	KnX	KnY	KnM	Т	С	D	—		_	
S				*	*					-	*		±	. <u>.</u>	<del>ل</del> ــــــــــــــــــــــــــــــــــــ
D											*	32-bit cor	<u>mmand (</u> 9 STEP	')	
Note Plea	es on ase re	oper efer to	and u	sage: functio	on sp	ecifica	tions 1	able f	or ead	ch dev	/ice in	DTAN	Continuous execution type	DTANP	Pulse execution type
sen	es ior	the	scope		vice u	sage						Flag signa	al: none		
Ex	plana	ation	•	S:	the c	lesigi	nated	sour	ce va	alue.	D: th	e TAN v	alue result.		
			•	Th flag	e sou g M1	urce ( 018.	desig	nateo	d by \$	S car	n be g	jiven as	radians or an	angle; t	his is decided by
			•	Wł is e	nen N equa	/1018 I to (a	8=Of angle	f, the ×π/1	oper 80).	atior	ı is in	radians	mode, where	the radi	ans (RAD) value
			•	Wł 0°≤	nen N ≦ ang	И101 gle <3	8=Or 860°.	n, the	ope	ratio	n is ir	n the ang	gle mode, wh	ere the	angular range is
			•	Wł	nen c	alcul	ation	resu	lts yi	eld 0	, M10	)20=On.			
			•	Th	e TA	N obt	aine	d fron	n the	soui	rce va	alue desi	ignated by <b>S</b> i	s stored	in <b>D</b> .
				The	e folle	owing	g figu	re dis	splay	s the	relat	ionship l	petween the a	arc and T	TAN results:
									R						
					-2 π	$\frac{3}{2}\pi$	- <u>μ</u> π	nta	1-	$\frac{\pi}{2}$	π	<u>3</u> π	S: F R: F 2π S	Radian Result (T/	AN value)
							/		/-1						
E	Examp	ole	•	WI DC bir	nen 2 ) in hary 1	X0=C radia floatir	)n, th ns (F ng po	e TA RAD) vint nu	N va will b umbe	lue c be sto er.	of the ored i	designa in (D11,	ated binary flo D10), with th	oating po e conter	bint number (D1, nt consisting of a





D 10 Binary floating point







SINH value =(e^s-e^{-s})/2

Example

• When X0=On, the SINH value obtained from the designated binary floating point number (D1, D0) will be stored in (D11, D10), with the content consisting of a binary floating point number.



AF 13	יו 7	D	СС	DSH	P     S     D     Binary floating point number COSH operation									
	В	it d	evio	ce			V	/ord	devic	e				16-bit command
	Х	\ \	Y	М	К	Н	KnX	KnY	KnM	Т	C	)	D	
S					*	*							*	1
D													*	<u>32-bit command (9 STEP)</u>
Notes on operand usage:       DCOSH       Continuous       DCOSH       Pulse         Please refer to the function specifications table for each device in series for the scope of device usage       DCOSH       Continuous       DCOSH       Pulse         Flag signal: none       Flag signal: none       Flag signal: none       Flag signal: none       Flag signal: none														
E) E	<ul> <li>S: the designated source (binary floating point number). D: the COSH value result.</li> <li>COSH value =(e^s+e^{-s})/2</li> <li>When X0=On, the COSH value obtained from the designated binary floating point number (D1, D0) will be stored in (D11, D10), with the content consisting of a binary floating point number.</li> </ul>													
				X  -  (S	:0 			H D	D0 0	[ Bina	D1	0 flo	ating	point
	D 11 D 10 COSH value Binary floating point													

D

D 11

D 10

APITANHBinary floating point138DTANH										/ floating point number TANH operation		
	Bit	t dev	ice			v	Vord	devic	e			16-bit command
	Х	Y	M	K	Н	KnX	KnY	KnM	Т	С	D	
S				*	*						*	
D											*	<u>32-bit command (</u> 9 STEP)
Not	es or	n oper	and us	sage:								DTANH Continuous DTANH Pulse
Please refer to the function specifications table for each device in execution type P execution type												
seri	series for the scope of device usage Flag signal: none											
E>	<ul> <li>S: the designated source (binary floating point number). D: the TANH value result.</li> <li>TANH value =(e^s-e^{-s})/(e^s+e^{-s})</li> <li>When X0=On, the TANH value obtained from the designated binary floating point number (D1, D0) will be stored in (D11, D10), with the content consisting of a binary floating point number.</li> </ul>											
	X0       Image: Display floating point											
	TANH value											

Binary floating point

AF 14	יו 7	D	SV	VAP	Ρ		S Excha						ange the up/down 8 bits					
	Bi	t de	evic	e			V	Vord	devic	е			16-bit command (3 STEP)					
	Х	Y	<b>'</b>	M	K	Н	KnX	KnY	KnM	Т	С	D	SWAP Continuous SWAPP Pulse execution					
S							*	*	*	*	*	*	execution type type					
Note	es or	ר op	erai	nd us	age:	none	1				1		32-bit command (5 STEP)         DSWAP       Continuous       DSWAPP       Pulse execution         execution type       type         Flag signal: none					
			_															

•

(S): The device that going to exchange its up/down 8 bits.

- When using 16-bit command, the upper 8-bit and lower 8-bit exchange.
- When using 32-bit command, the contents of upper 8-bit and lower 8-bit of the 2 registers exchange.
- This command usually uses pulse execution type (SWAPP, DSWAPP)

AF 15	0	MC	DDR	W P	S		52 (	<u>S</u> 3) (	S	n	M	IODBUS data read/write		
	Bit device         Word device         16-bit command_(5 STEP)													
	Х	Y	Μ	K	Н	KnX	KnY	KnM	Т	С	D	MODRW Continuous MODRW Pulse		
S1				*	*						*	execution type P execution type		
S2				*	*						*			
S3				*	*						*	<u>32-bit command</u>		
S											*			
n				*	*						*			
												Flag signal: M1077 M1078 M1079		

- Explanation
- S1: online device address. S2: communications function code. S3: address of data to read/write. S: register for data to be read/written is stored. N: length of data to be read/written.
- COM1 must be defined as controlled by the PLC (set Pr.09-31 = -12) before using this command, and the corresponding communications speed and format must also be set (set Pr.09-01 and Pr.09-04). S2: communications function code. Currently only supports the following function code; the remaining function code cannot be executed.

Function	Description
H 02	Input read
H 03	Read word
H 06	Write single word
H OF	Write multiple coils
H 10	Write single word

- After executing this command, M1077, M1078 and M1079 will be immediately changed to 0.
- As an example, when LTC must control another converter and PLC, if the converter has a station number of 10 and the PLC has a station number of 20, see the following example:

			MOI	DRW com	mand	
Serial	Example	S1	S2	S3	S4	n
NO.	•	Node ID	Function code	Address	Register	Length:
1	Reads 4 sets of data comprising the converter slave device parameters Pr.01-00 to Pr.01- 03, and saves the read data in D0 to D3	K10	H3	H100	D0	K4
2	Reads 3 sets of data comprising the converter slave device addresses H2100 to H2102, and saves the read data in D5 to D7	K10	H3	H2100	D5	K3
3	Writes 3 sets of data comprising the converter slave device parameters Pr.05-00 to Pr.05- 03, and writes the values as D10 to D12	K10	H10	H500	D10	K3
4	Writes 2 sets of data comprising the converter slave device addresses H2000 to H2001, and writes the values as D15 to D16	K10	H10	H2000	D15	K2

Control slave device converter

PLC controlling	slave	device
-----------------	-------	--------

			MOI	DRW com	mand	
Serial	Evenale	S1	S2	S3	S4	n
No.	Example	Node	Function	Address	Register	Length:
	Reads 4 sets of data comprising	J	code			
4	the PLC slave device's X0 to X3	1400	110	11400	50	144
1	state, and saves the read data in	K20	HZ	H400	DU	K4
	bits 0 to 3 of D0					
	Reads 4 sets of data comprising					
2	the PLC slave device's Y0 to Y3	K20	Ц2	H500	D1	K1
2	state, and saves the read data in	1120	112	11500		1/14
	bits 0 to 3 of D1					
	Reads 4 sets of data comprising					
3	the PLC slave device's M0 to M3	K20	H2	H800	D2	K4
-	state, and saves the read data in	-				
	DITS U TO 3 OF D2					
	the PLC slave device's T0 to T3					
4	state, and saves the read data in	K20	H2	H600	D3	K4
	hits 0 to 3 of D3					
	Reads 4 sets of data comprising					
_	the PLC slave device's C0 to C3					144
5	state, and saves the read data in	K20	H2	HE00	D4	K4
	bits 0 to 3 of D4					
	Reads 4 sets of data comprising					
6	the PLC slave device's T0 to T3	K20	НЗ	H600	D10	K4
0	count value, and saves the read	1120	110	11000	DIO	114
	data of D10 to D13					
	Reads 4 sets of data comprising					
7	the PLC slave device's CU to C3	K20	H3	HE00	D20	K4
	data of D20 to D23					
	Reads 4 sets of data comprising					
-	the PLC slave device's D0 to D3					
8	count value, and saves the read	K20	H3	H1000	D30	K4
	data of D30 to D33					
	Writes 4 sets of the PLC slave					
9	device's Y0 to Y3 state, and writes	K20	HF	H500	D1	K4
	the values as bits 0 to 3 of D1					
	Writes 4 sets of the PLC slave					
10	device's M0 to M3 state, and writes	K20	HF	H800	D2	K4
	the values as bits 0 to 3 of D2					
11	vvrites 4 sets of the PLC slave	K20	ωс		D2	K4
11	the values as hits 0 to 3 of D3	N20	пг	ПООО	03	N4
	Writes 4 sets of the PI C slave					
12	device's C0 to C3 state, and writes	K20	HF	HE00	D4	K4
	the values as bits 0 to 3 of D4					
	Writes 4 sets of the PLC slave					
13	device's T0 to T3 state, and writes	K20	H10	H600	D10	K4
	the values of D10 to D13					
	Writes 4 sets of the PLC slave					
14	device's C0 to C3 state, and writes	K20	H10	HE00	D20	K4
	Ine values of D20 to D23					
15	venues 4 sets of the PLC slave	K20	Ц10	Ц1000	050	K A
10	the values of D30 to D33	1120	1110	111000	030	114

## Chapter 13 PLC Function Applications | LTC

- Will trigger M0 On when the PLC begins to operate, and sends instruction to execute one MODRW command.
- After receiving the slave devices response, if the command is correct, it will execute one ROL command, which will cause M1 to be On.
- After receiving the slave devices response, will trigger M50 = 1 after a delay of 10 PLC scanning cycles, and then execute one MODRW command.
- After again receiving the slave devices response, if the command is correct, it will execute one ROL command, and M2 will change to On at this time (and M2 can be defined as a repeat of M); K4M0 will change to K1, and only M0 will remain 1. Transmission can proceed in a continuous cycle. If you wish to add a command, merely add the desired command in the empty frame, and change repeat M to Mn+1.

	M1002		_				
0	┝─┥┠──┬────			MOV	K1	K4N	10
	Start unning forward (instantaneou	isly)	-				,
(	$M^2 \rightarrow Mn+1$						
	М1002 МО						
7		MODRW	K1	H3	H4064	D100	K1
-	Start running forward (instantaneou	isly)					
	M50 M1	r					î
	┝─╢┠─┼─╢┠─────	MODRW	K1	H3	H406A	D200	K4
	Mn-1						
		MODRW					
	Mn						
		MODRW					
	M1077 M4070 M4070						
35						K4M0	K1
00	485 R/W 485 R/W 485 R/W						
	complete mistake over time						
12	M1077						30
43	485 R/W						50
	complete			r			i
	└──┤ D 30 K10 ├──┬───			N	<i>I</i> OV	K0 [	)30
						( M.5	0 )
						כועו ך	0)
58					[	FNI	$\overline{)}$
					l		

AP	2	Т	СМР		(5	ิ โก (	52) (	<b>S</b> ₃ )	S	ത	C	Comparison of calendar data
16	0			P	9			<u> </u>				
	Bit	devi	ce			V	Vord	devic	e			16-bit command (11 STEP)
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	TCMP Continuous TCMPP Pulse
S1				*	*	*	*	*	*	*	*	execution type execution type
52				*	*	*	*	*	*	*	*	
S									*	*	*	<u>32-bit command</u>
D		*	*									
Note Plea	es on ase re es for	opera fer to	and us the fu	age: inctic	n spe	ecifica	tions 1	table f	or ead	ch dev	vice in	n Flag signal: none
Ex	plana	ation		S₁: min the of c	Sets utes com	s the of th paris	hour ie coi ion tii on.	s of t mpar me, s	he co ison etting	ompa time, g ranę	rison setti ge is	n time, setting range is "K0–K23." $S_2$ : Sets the ing range is "K0–K59." $S_3$ : Sets the seconds of "K0–K59." $S$ : current calendar time. $D$ : Results
			•	Cor cale exp	mpai enda oress	res th ir tim sed in	ne tin le in <b>D</b> .	ne in hou	houi rs, m	rs, m ninute	inute s, a	es, and seconds set in $S_1-S_3$ with the current and seconds, with the results of comparison
			•	S T min sec	he h iutes ond:	our of the softh	conte le cui he cu	ent of rrent urrent	the caler cale	curre ndar t ndar	nt ca ime, time	alendar time is "K0–K23." <b>S</b> +1 comprises the , and consists of "K0–K59." <b>S</b> +2 comprises the , and consists of "K0–K59."
			•	The con con con	e cur nmai itent nmai	rrent nd af valu nd wi	caler ter u e of Il not	ndar sing <b>S</b> ex t exec	time the T ceed cute,	desig RD o s the and I	gnate comn rang M106	ed by <b>S</b> is usually compared using the TCMP mand to read the current calendar time. If the nge, this is considered an operating error, the 68=On.
E	xamp	le	•	Wh D22 in N stat	en X 2 will /10– tus p	(10=(   be c -M12 prior t	On, tl ompa . Whe o M1	he co ared en X1 0–M [°]	omma with t 10 Or 12 wi	and w he pr i→Of II be	/ill ex reset f, the main	xecute, and the current calendar time in D20– t value of 12:20:45; the results will be displayed e command will not be executed, but the On/Off ntained.
			•	lf re par	esult allel	s in t conr	he fo lectio	orm o on of	of ≥, ≤ M10-	≤, or ; -M12	≠ are	e needed, they can be obtained by series and
					(10	_	TCN	1P	K12	2	K20	0 K45 D20 M10
				1		M1 H H H H	012		when when when	12 : 2 12 : 2 12 : 2	20 : 4 20 : 4 20 : 4	$45 > \frac{D20 (hr)}{D21 (min)}$ $45 = \frac{D20 (hr)}{D22 (sec)}$ $45 = \frac{D20 (hr)}{D22 (sec)}$ $45 < \frac{D20 (hr)}{D21 (min)}$ $D22 (sec)$

AF	PI TZCP P S1 S2 S D										С	ompariso	on of calendar	⁻ data	
	Rit		ice	P		١٨	lord	dovic				16 bit oor	mmond (0 STE	D)	1
	X		M	к	Н	KnX	KnY	KnM	т	C		TZCP		TZCPP	Pulse
S1		-							*	*	*	1201	execution type	12011	execution type
S2									*	*	*		·		
S									*	*	*	32-bit cor	<u>nmand</u>		
D		*	*										—	—	
Not Plea seri	es on ase re es foi	oper efer to the s	and us o the f scope	sage: function of deve	on spe vice u	ecifica sage	tions t	able f	or ea	ch dev	/ice ir	Flag signa	al: none		
E	kplan	ation	) •	<b>S</b> ₁: cor	Set: npar	s the ison t	lowe ime.	er lin <b>S</b> : cu	nit of Irren	f the t cale	com enda	iparison r time. <b>D</b> :	time. <b>S</b> ₂ : Set Results of co	s the up mpariso	pper limit of the on.
			•	Pei cur set res	rform rent as <b>S</b> ults o	ns rar caler <b>S</b> 1 an of cor	nge c ndar f d the mpari	ompa time uppa ison i	ariso desi er lin n <b>D</b> .	n by gnate nit of	com ed by the	paring th ^y <b>S</b> with t comparis	e hours, minu he lower limit on time set a	ites, and of the o s <b>S</b> ₂ , an	d seconds of the comparison time d expresses the
			•	<b>S</b> ₁, cor	<b>S</b> ₁ - npar	+1, <b>S</b> ison 1	₁ +2: time.	Sets	s the	hou	rs, n	ninutes, a	and seconds	of the le	ower limit of the
			•	S₂, cor	<b>S₂</b> - npar	+1, <b>S</b> ison 1	₂ +2: time.	Sets	s the	hou	rs, n	ninutes, a	and seconds	of the u	pper limit of the
			•	<b>S</b> , \$	<b>S</b> +1	, c2 <b>S</b>	+2: -	The h	ours	s, mir	utes	, and sec	conds of the c	urrent ca	alendar time
			•	• The D0 designated by the <b>S</b> listed in this program is usually obtained by comparison using the TZCP command after using the TRD command in advance to read the current calendar time. If the value of <b>S</b> ₁ , <b>S</b> ₂ , or <b>S</b> exceeds the range, this is considered an operating error, the command will not execute, and M1068=On.											
			•	Wh upp lim will	ien tl ber li it val be (	he cu mit va ue <b>S</b> On ur	rrent alue <b>(</b> 1 and ider c	time S ₂ , D S is other	<b>S</b> is will I grea	less be Or ater t dition	thar n. Wi han t s.	the lowe nen the c he upper	er limit value <b>S</b> urrent time <b>S</b> r limit value <b>S</b>	<b>S₁</b> and <b>S</b> is greate ₂, <b>D</b> +2	<b>3</b> is less than the er than the lower will be On; <b>D</b> +1

• When X10=On, the TZCP command executes, and one of M10–M12 will be On. When X10=Off, the TZCP command will not execute, and M10–M12 will remain in the X10=Off state.

×10 ⊢-		TZCP	D0	D20	)	D10	ſ	V10	
	М [^] —	10   )N when	D0 (hr) D1 (min) D2 (sec)	>	D D D	10 (hr) 11 (min) 12 (sec)			
	М [^] — <b>1</b> С	11   )N when	D0 (hr) D1 (min) D2 (sec)	≦	D D D	10 (hr) 11 (min) 12 (sec)	<=	D20 D21 D22	(hr) (min) (sec)
	м [.] Н	12   N when			D D D	10 (hr) 11 (min) 12 (sec)	>	D20 D21 D22	(hr) (min) (sec)

AF 16	יו 2	- T.	ADE	) P		G	S1) (	<u>S2</u> (	D		C	alendar o	data addition		
	Bit	t dev	ice			V	/ord	devic	e			16-bit cor	mmand (7 STE	P)	
	Х	Y	Μ	К	Н	KnX	KnY	KnM	Т	С	D	TADD	Continuous	TADDP	Pulse
S1									*	*	*	<u> </u>	execution type		execution type
S2									*	*	*	32-bit cor	mmand		
D			andu	codo.					^			<u> </u>		_	
Plea	ase r	efer to	o the scope	function of dev	on spe vice u	ecifica sage	tions t	able fo	or ead	ch dev	rice in	• Flag	signal: M1020 Z M1022 Ca M1068 Ca	ero flag arry flag alendar erro	1
E×	plan	ation		<b>S</b> 1:	time	adde	end.	S₂: tir	me a	ugen	d. <b>D</b> :	time sur	n.		
			•	The cal sto	e calo enda red a	enda Ir dat Is ho	r data a in l urs, r	a in he hours ninute	ours, s, mir es, a	minu nutes nd se	utes, , and econo	and seco l second ds in the	onds designat s designated register desig	ed by <b>S</b> ; by <b>S</b> 1, a nated b	₂ is added to the and the result is y <b>D</b> .
			•	cor cor	ne va mmai de 0E	nd w 1A(H	ill no IEX)	or <b>S₂</b> t exe	exce cute	, M1	ne ra 067,	M1068=	On, and D10	d an ope 67 will i	record the error
			•	lf ti and	ne re d <b>D</b> w	sults vill dis	of ad splay	ditior the r	n are result	grea ts of a	ter th additi	an or equi ion minu:	ual to 24 hours s 24 hours.	s, carry i	flag M1022=On,
			•	lf t M1	he re 020=	sults On.	of a	dditio	on are	e equ	ual to	0 (0 ho	urs, 0 minute:	s, 0 sec	onds), zero flag
E	xam	ple	•	Wh hou dat sto by	nen X urs, r ta in l ored a D20	(10=) ninut hours as a to to D2	On, t es, a s, mir otal n 22.	he T/ nd se nutes, iumbe	ADD econo , and er of	com ds de seco hours	mano signa onds s, mir	d will be ated by E designat nutes, an	executed, ar 00 to D2 will b ed by D10 to d seconds in t	nd the c e added D12, and the regis	alendar data in to the calendar d the results are sters designated
				<10				00		ח10		D20			

11	TADD	00	DIU	D20	
					_
D0 8(hr)		D10 6(	íhr)	D20	14(hr)
D1 10(mi	n) +	D11 40(	min) —	► D21	50(min)
D2 20(se	<u>c)</u>	D12 6	(sec)	D22	26(sec)
8 : 10 : 20	)	6:40:	6	14 :	50 : 26

20:20:5



14:30:8

5:49:57

AF 16	6	ר	RD	Ρ			(	D			C	alendar	data read		
	Bit	devid	ce			N	/ord	devic	e			16-bit cor	<u>mmand</u> (3 STE	P)	
	Х	Y	M	K	Н	KnX	KnY	KnM	Т	С	D	TRD	Continuous	TRDP	Pulse
D									*	*	*	<u> </u>	execution type		execution type
Note: Pleas	s on op se refe	erand of the second of the second sec	usage e func	: tion s	specif	ficatior	ns tab	le for	each	n devi	ice ir	32-bit cor	<u>mmand</u>		
serie	s for the	e scope	e of de	evice ı	usage	;								_	
												<ul> <li>Flag sig</li> </ul>	nal: none		

- $S_1$ : time minuend.  $S_2$ : time augend. D: time sum.
- **D**: device used to store the current calendar time after reading.
- The EH/EH2/SV/EH3/SV2/SA/SX/SC main units have a built-in calendar clock, and the clock provides seven sets of data comprising year, week, month, day, hour, minute, and second stored in D1063 to D1069. The TRD command function allows program designers to directly read the current calendar time into the designated seven registers.
- D1063 only reads the two right digits of the Western calendar year.

- When X0=On, the current calendar time is read into the designated registers D0 to D6.
- In D1064, 1 indicates Monday, 2 indicates Tuesday, and so on, with and 7 indicating Sunday.

I X0		
	TRD	00
''	IND	00

Special D	Item	Content		General D	Item
D1063	Year (Western)	00–99	1	D0	Year (Western)
D1064	Weeks	1–7	$\rightarrow$	D1	Weeks
D1065	Month	1–12	+	D2	Month
D1066	Day	1–31	+	D3	Day
D1067	Hour	0–23	+	D4	Hour
D1068	Minute	0–59	$\rightarrow$	D5	Minute
D1069	Second	0–59	$\rightarrow$	D6	Second

API 170 <b>D</b> GRY	P	В	IN→GRA	Y code transf	formatio	n
Bit device	Word device		16-bit cor	mmand (5 STEP)	)	
X Y M	K         H         KnX         KnY         KnM         T         ()           *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *<	C D * *	GRY	Continuous execution type	GRYP	Pulse execution type
D	* * *	* *				1
Notes on operand us Please refer to the t series for the scope	sage: iunction specifications table for each o of device usage	device in	DGRY	Continuous execution type	DGRYP	Pulse execution type
			<ul> <li>Flag sign</li> </ul>	al: none		
	S: source device D: device st	torina C		le		
Explanation						
•	Transforms the content value code, which is stored in the de	e (BIN v evice de	alue) of esignated	the device de d by <b>D</b> .	esignate	d by <b>S</b> to GRAY
•	The valid range of <b>S</b> is as considered an error, and the c	shown commai	below; nd will nc	if this range ot execute.	is exce	eded, it will be
	16-bit command: 0–32,767					
•	32-bit command: 0–2,147,483	3,647				
Example	When X0=On, the constant K D0.	(6513 w	ill be trai	nsformed to G	RAY co	de and stored ir
	X0   -     GRY K6513	DO				
	K6513=H1971 0 0 1 1	0 0 1 0	1 1 1 0	ь0 0 0 1		
	b1 5	$\overline{\mathbb{U}}$	7	bO		
	GRAY CODE 6513 00010	1 0 1 1	1001	001		

DO

AP 171	D	G	BIN	Ρ			S		)		G	GRAY code $\rightarrow$ BIN transformation	
	Bit o	devi	ce			V	Vord	devic	e			16-bit command (5 STEP)	
S	X	Y	M	K *	H *	KnX *	KnY *	KnM *	T *	C *	D *	GBIN Continuous GBINP Pulse execution type execution type	уре
D							*	*	*	*	*		1
Note Pleas serie	s on c se ref s for t	opera er to the s	the fu cope c	age: unction of dev	on spe /ice u	ecifica sage	tions 1	table f	or ea	ch dev	/ice ir	n DGBIN Continuous DGBINP Pulse execution type execution type	уре
												Flag signal: none	
Exp	olana	tion	•	S: s afte	souro er tra	ce de Insfor	vice mati	used on.	to st	ore (	GRA	Y code. <b>D</b> : device used to store BIN value	e
			•	The trar	e GR nsfor	AY c med	ode o into a	corre: a BIN	spon I valu	ding ıe, wl	to th hich	ne value of the device designated by <b>S</b> is is stored in the device designated by <b>D</b> .	
			•	Thi witl GR	s coi h the AY c	mma PLC code)	nd wi s inp into	ill trar out an a BIN	nsfor Id (th I vali	m the is en ue, w	e val code hich	lue of the absolute position encoder conn er usually has an output value in the form n is stored in the designated register.	ected ı of
			•	The cor	e vali nside	id rar red a	nge o an err	f <b>S</b> is or, a	as s nd th	howi e cor	n bel mma	low; if this range is exceeded, it will be and will not execute.	
				16-	bit co	omma	and: (	0–32	,767				
			•	32-	bit c	omm	and:	0–2,	147,4	183,6	47		
E	ampl	le	•	Wł inp	nen X out po	X20= pints	On, t X0 to	he G X17	RAY will	code be tra	e of ansfo	the absolute position encoder connected ormed into BIN value and stored in D10.	d with
				H	20 		GBIN	I 1	(4X0	[	D10		
				GR	AY C	ODE	6513	X17 3 0 0	0 1	0 1	K4X	<0 x0 1 1 0 0 1 0 0 1	
								b15	1-1-1		$\int$	ьо	
					H19	71=K	6513	3 0 0	01	10	011	0 1 1 1 0 0 0 1	

215 21	ין ק <b>ר</b> ד	<b>)</b>	LD#				S1) (	<u>S2</u> )		C	Conta	act form logical operation LD#
	Bit	dev	ice			V	Vord	devic	е			16-bit command (5 STEP)
	Х	Y	M	К	Н	KnX	KnY	KnM	Т	С	D	LD# Continuous – –
S1				*	*	*	*	*	*	*	*	execution type
S2				*	*	*	*	*	*	*	*	
Not	es on	oper	and us	sade.	# : 2	<b>R</b>   ^						<u>32-bit command</u> (9 STEP)
Plea	ase re	efer to	o the france	function of devi	on spe /ice us	ecifica sage	tions 1	able f	or eac	h de	evice in	n DLD# Continuous – – – execution type
	00101		ungo		100 4	Jugo						Flag signal: none

 $S_1$ : data source device 1.  $S_2$ : data source device 2.

- This command performs comparison of the content of **S**₁ and **S**₂; when the result of comparison is not 0, this command will be activated, but this command will not be activated when the result of comparison is 0.
- The LD#This command can be used while directly connected with the busbar

API No.	16-bit commands	32-bit commands	C	ondit activ	ions fo /ation	or	C	Condit inacti	ions for vation	
215	LD&	DLD&	S₁	&	S ₂	≠0	S₁	&	S ₂	=0
216	LD	<b>D</b> LD	S ₁		S ₂	≠0	S₁		S ₂	=0
217	LD^	DLD^	S₁	٨	S ₂	≠0	S₁	۸	S ₂	=0

- &: logical AND operation.
- |: logical OR operation.
- ^: logical XOR operation.

- When the content of C0 and C10 is subjected to the logical AND operation, and the result is not equal to 0, Y10=On.
- When the content of D200 and D300 is subjected to the logical OR operation, and the result is not equal to 0, and X1=On, Y11=On and remains in that state.



AF 218 220	ין ס <b>נ</b>	<b>A</b>	ND#	ŧ —			S1) (	<u>S2</u> )		С	ontac	ct form logical operation AND#
	Bit	dev	ice			V	Vord	devic	e			16-bit command (5 STEP)
	Х	Y	Μ	K	Н	KnX	KnY	KnM	Т	С	D	AND# Continuous – –
S1				*	*	*	*	*	*	*	*	execution type
S2				*	*	*	*	*	*	*	*	
Note	es on	oper	and u	sade.	# : /	<u>k</u>   ^						<u>32-bit command</u> (9 STEP)
Diac		ofor t	a tha	functi		∽, _I , ooifioo	tiona t	abla f	or oor	h da	viao in	DAND# Continuous – –
Flee				ofdo	uice u	ecinca	lions i	able i	or eac	in de	vice in	execution type
sen	es ioi	the s	scope	orde	vice u	sage						└↓↓
												Flag signal: none

 $S_1$ : data source device 1.  $S_2$ : data source device 2.

- This command performs comparison of the content of S₁ and S₂; when the result of comparison is not 0, this command will be activated, but this command will not be activated when the result of comparison is 0.
- The AND# command is an operation command in series with the contact.

API No.	16-bit commands	32-bit commands	C	ondit activ	tions fo /ation	or	C	Condit inacti	ions for vation	
218	AND&	<b>D</b> AND&	S₁	&	S ₂	≠0	S ₁	&	S ₂	=0
219	AND	<b>D</b> AND	S ₁		S ₂	≠0	S ₁		S ₂	=0
220	AND [^]	DAND^	S ₁	۸	S ₂	≠0	S ₁	۸	S ₂	=0

- &: logical AND operation.
- |: logical OR operation.
- ^: logical XOR operation.

- When X0=On and the content of C0 and C10 is subjected to the logical AND operation, and the result is not equal to 0, Y10=On.
- When X1=Off and D10 and D0 is subjected to the logical OR operation, and the result is not equal to 0, Y11=On and remains in that state.
- When X2 =On and the content of the 32-bit register D200 (D201) and 32-bit register D100 (D101) is subjected to the logical XOR operation, and the result is not equal to 0 or M3=On, M50=On.



AF 221 22	API 221- 223 D OR# S1 S2 Contact form logical operation OR#											
	Bit device Word device 16-bit command (5 STEP)											
X Y M K H KnX KnY KnM T C [								KnM	D	OR# Continuous – –		
S1	S1         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *											
S2				*	*	*	*	*	*	*	*	
Not	es on	oper	and u	sade:	#:8	&   ^						<u>32-bit command (9 STEP)</u>
DIO		ofor to	a tha	functi	$\frac{\pi}{2}$	∽, _I , ⊃cifica	tions f	tabla f	or ooo	h da	ovico in	DOR# Continuous – –
Please refer to the function specifications table for each device										execution type		
series for the scope of device usage												
Flag sig										Flag signal: none		

**S**₁: data source device 1. **S**₂: data source device 2.

- This command performs comparison of the content of  $S_1$  and  $S_2$ ; when the result of comparison is not 0, this command will be activated, but this command will not be activated when the result of comparison is 0.
- The OR# command is an operation command in series with the contact.

API No.	16-bit commands	32-bit commands	C	ondit activ	ions fo ation	or	C	Condit inacti	ions for vation	
221	OR&	DOR&	S ₁	&	S ₂	≠0	S₁	&	S ₂	=0
222	OR	DOR	S ₁		S ₂	≠0	S₁		S ₂	=0
223	OR^	DOR^	S ₁	٨	S ₂	≠0	S ₁	۸	S ₂	=0

- &: logical AND operation.
- |: logical OR operation.
- ^: logical XOR operation.

- When X1=On or the content of C0 and C10 is subjected to the logical AND operation, and the result is not equal to 0, Y0=On.
- When X2 and M30 are both equal to On, or the content of 32-bit register D10 (D11) and 32-bit register D20 (D21) is subjected to the logical OR operation, and the result is not equal to 0, or the content of the 32-bit counter C235 and the 32-bit register D200 (D201) is subjected to the logical XOR operation, and the result is not equal to 0, M60=On.



AF 224 23	סן ו− 0 נ		.D%		(S1) (S2) Cor						Contact form compare LD*					
	Bit device Word device									16-bit command (5 STEP)						
	Х	Y	M	Κ	K H KnX KnY KnM T C D							LD X Continuous – –				
S1				*	* * * * * * * * *						*	execution type				
S2				*	*	*	*	*	*	*	*					
Not	es on	oper	and u	sade:	* :	=. >. <	. <>.	$\leq \geq$				<u>32-bit command</u> (9 STEP)				
Plea seri	ase re es for	efer to	o the t	function of deviations	iction specifications table for each device ir device usage							n DLD※ Continuous – – – execution type				
						9-						Flag signal: none				

•

 $S_1$ : data source device 1.  $S_2$ : data source device 2.

- This command compares the content of S₁ and S₂. Taking API 224 (LD=) as an example, this command will be activated when the result of comparison is "equal," and will not be activated when the result is "unequal."
- The LD* can be used while directly connected with the busbar

API No.	16-bit commands	32-bit commands	Conditions for activation	Conditions for inactivation
224	LD=	<b>D</b> LD=	$\mathbf{S_1}=~\mathbf{S_2}$	$S_1 \neq S_2$
225	LD>	DLD>	$S_1 > S_2$	$S_1 \leq S_2$
226	LD<	DLD<	$S_1 < S_2$	$S_1 \ge S_2$
228	LD<>	DLD<>	$S_1 \neq S_2$	$S_1 = S_2$
229	LD < =	DLD < =	$S_1 \leq S_2$	$S_1 > S_2$
230	LD > =	DLD>=	$S_1 \ge S_2$	$S_1 < S_2$

Example

When the content of C10 is equal to K200, Y10=On.

When the content of D200 is greater than K-30, and X1=On, Y11=On and remains in that state.



•

232 23	API ^{232–} ²³⁸ D AND ※ S1 S2 Contact form cor								t form compare AND*						
	Bit device Word device									16-bit command_ (5 STEP)					
	Х	Y	М	K	Н	KnX	KnY	KnM	Т	С	D	AND Continuous – –			
S1				*	*	*	*	*	*	*	*	execution type			
S2				*	*	*	*	*	*	*	*				
Not	es on	oper	and u	sade:	* : :	- >. <	. <>.	$\leq 2 \geq$				<u>32-bit command</u> (9 STEP)			
Plea	Please refer to the function specifications table for each device in series for the scope of device usage								DAND※ Continuous – – – execution type						
										Flag signal: none					

## Explanation

 $S_1$ : data source device 1.  $S_2$ : data source device 2.

- This command compares the content of  $S_1$  and  $S_2$ . Taking API 232 (AND=) as an example, when the result of comparison is equal, this command will be activated; when the result of comparison is unequal, this command will not be activated.
- The AND* command is a comparison command in series with a contact.

API No.	16-bit commands	32-bit commands	Conditions for activation	Conditions for inactivation
232	AND=	<b>D</b> AND=	$S_1 = S_2$	$S_1 \neq S_2$
233	AND>	DAND>	$S_1 > S_2$	$S_1 \leq S_2$
234	AND<	DAND<	$S_1 < S_2$	$S_1 \ge S_2$
236	AND <>	DAND<>	$S_1 \neq S_2$	$S_1 = S_2$
237	AND < =	$\mathbf{D}$ AND $<=$	$S_1 \leq S_2$	$S_1 > S_2$
238	AND > =	DAND>=	$S_1 \ge S_2$	$S_1 < S_2$

- When X0=On and the current value of C10 is also equal to K200, Y10=On.
- When X1=Off and the content of register D0 is not equal to K-10, Y11=On and remains in that state.
- When X2 =On and the content of the 32-bit register D0 (D11) is less than 678,493, or M3=On, M50=On.



240 24	ףן ) 6 <b>נ</b>		)R※		<u>S1</u> <u>S2</u> C						Contact form compare OR*					
	Bit device Word device									16-bit command_ (5 STEP)						
	Х	Y	M	Κ	K H KnX KnY KnM T C D							OR X Continuous – –				
S1				*	* * * * * * *						*	execution type				
S2				*	*	*	*	*	*	*	*					
Not	es on	oper	and us	sade:	* :	=. >. <	. <>.	$\leq \geq$				<u>32-bit command</u> (9 STEP)				
Plea seri	ase re es for	efer to	o the f	function of deviations	nction specifications table for each device ir device usage							n DOR Continuous – – – – – execution type				
			·			U						Flag signal: none				

•

 $S_1$ : data source device 1.  $S_2$ : data source device 2.

- This command compares the content of **S**₁ and **S**₂. Taking API 240 (OR=) as an example, when the result of comparison is equal, this command will be activated; when the result of comparison is unequal, this command will not be activated.
- The OR* command is a compare command in parallel with a contact.

API No.	16-bit commands	32-bit commands	Conditions for activation	Conditions for inactivation
240	OR=	DOR=	$\mathbf{S_1}=~\mathbf{S_2}$	$S_1 \neq S_2$
241	OR>	DOR>	$\mathbf{S_1} > \mathbf{S_2}$	$\mathbf{S_1} \leq \mathbf{S_2}$
242	OR<	DOR<	$S_1 < S_2$	$S_1 \ge S_2$
244	OR <>	DOR<>	$S_1 \neq S_2$	$\mathbf{S_1}=\ \mathbf{S_2}$
245	OR < =	DOR < =	$\mathbf{S_1} \leq \mathbf{S_2}$	$S_1 > S_2$
246	OR > =	DOR>=	$S_1 \ge S_2$	$S_1 < S_2$

Example

When X0=On and the current value of C10 is also equal to K200, Y10=On.

- When X1=Off and the content of register D0 is not equal to K-10, Y11=On and remains in that state.
- When X2 =On and the content of the 32-bit register D0 (D11) is less than 678,493, or M3=On, M50=On.



•

AF 275 28	<b>&gt; </b> 5 0	F	<b>FLD</b> ∢	*	_	<u>(S1) (S2</u>						Floating point number contact form compare LD*						
	Bit device Word device									16-bit command								
	Х	Y	M	Κ	Н	KnX	KnY	KnM	Т	С	D							
S1									*	*	*	 						
S2									*	*	*	<u>32-bit command</u> (9 STEP)						
Not	es or	oper ofor t	and u	sage:	# :	&,  , ^ ecifica	tions	FLD% Continuous – – – execution type										
seri	es fo	r the	scope of device usage							Flag signal: none								

- Explanation
- **S**₁: data source device 1. **S**₂: data source device 2.
- This command compares the content of S₁ and S₂. Taking "FLD=" as an example, if the result of comparison is "equal," this command will be activated; but it will not be activated when the result is "unequal."
- The FLD* command can directly input floating point numerical values (for instance: F1.2) to the S₁, S₂ operands, or store floating-point numbers in register D for use in operations.
  - Conditions for Conditions for API No. 32-bit commands inactivation activation 275 FLD = $S_1 = S_2$  $S_1 \neq S_2$ FLD> 276  $S_1 > S_2$  $S_1 \leq S_2$ FLD< 277  $S_1 < S_2$  $S_1 \ge S_2$ 278 FLD <> $S_1 \neq S_2$  $S_1 = S_2$ 279 FLD < = $S_1 \leq S_2$  $\bm{S_1} > \ \bm{S_2}$ FLD > =280  $S_1 \geq S_2$  $S_1 < S_2$
- This command can be used while directly connected with the busbar

Example

When the floating point number of register D200 (D201) is less than or equal to F1.2, and X1 activated, contact Y21 will be activated and remain in that state.



AF 281 28	FAND FAND Flo						<u>S1</u> )	(S2)	oatin	g point number contact form compare AND*				
	Bit device Word device							devic		16-bit command				
	Х	Y	М	K	Н	KnX	KnY	KnM	Т	C D				
S1									*	*	* *			
S2									*	*	*	<u>32-bit command</u> (9 STEP)		
SZ       Image: Im									vice in	FAND Continuous — — —				
												riag signal: none		

•

 $S_1$ : data source device 1.  $S_2$ : data source device 2.

- This command compares the content of S₁ and S₂. Taking "FAND=" as an example, if the result of comparison is "equal," this command will be activated; but it will not be activated when the result is "unequal."
- The FAND* command can directly input floating point numerical values (for instance: F1.2) to the S₁, S₂ operands, or store floating-point numbers in register D for use in operations.

API No.	32-bit commands	Conditions for activation	Conditions for inactivation
281	FAND=	$\mathbf{S_1}=~\mathbf{S_2}$	$S_1 \neq S_2$
282	FAND>	$S_1 > S_2$	$S_1 \leq S_2$
283	FAND <	$S_1 < S_2$	$S_1 \ge S_2$
284	FAND<>	$S_1 \neq S_2$	$S_1 = S_2$
285	FAND <=	$S_1 \leq S_2$	$S_1 > S_2$
286	FAND>=	$S_1 \ge S_2$	$S_1 < S_2$

• This command can be used while directly connected with the busbar

Example

When X1=Off, and the floating point number in register D100 (D101) is not equal to F1.2, Y21=On and remains in that state.



•

AF 287 29	<b>&gt; </b> 7_ 2	F	OR	*	_	(	<b>S1</b> )	(S2)		FI	oatin	g point number contact form compare OR*	
	Bit device Word device								16-bit command				
	Х	Y	Μ	K	Н	KnX	KnY	KnM	Т	С	D		
S1									*	*	*	 	
S2									*	*	*	<u>32-bit command</u> (9 STEP)	1
Not	Notes on operand usage: # : &,  , ^ FOR Continuous								1				
series for the scope of device usage												Flag signal: none	

- Explanation
- **S**₁: data source device 1. **S**₂: data source device 2.
- This command compares the content of S₁ and S₂. Taking "FOR=" as an example, if the result of comparison is "equal," this command will be activated; but it will not be activated when the result is "unequal."
- The FOR* command can directly input floating point numerical values (for instance: F1.2) to the S₁, S₂ operands, or store floating-point numbers in register D for use in operations.
  - Conditions for Conditions for API No. 32-bit commands inactivation activation 287 FOR=  $S_1 = S_2$  $S_1 \neq S_2$ FOR>  $S_1 > S_2$ 288  $S_1 \leq S_2$ FOR< 289  $S_1 < S_2$  $S_1 \ge S_2$ 290 FOR <> $S_1 \neq S_2$  $S_1 = S_2$ 291 FOR < = $S_1 \leq S_2$  $\bm{S_1} > \, \bm{S_2}$ 292 FOR > = $S_1 \ge S_2$  $S_1 < S_2$
- This command can be used while directly connected with the busbar

Example

 When X2 and M30 are both equal to "On," or the floating point number in register D100 (D101) is greater than or equal to F1.234, M60=On.



Code	ID	Descript	Recommended Treatment
Diad	50	Data writing memory error	Check if there is any error in the program
PLOU	50	Data whiting memory error	and download the program again.
DISV	51	Data writing memory error while	Cycle the power and download the program
PLOV	51	executing programs	again.
DLdA	52	Error while upleading programs	Upload again. If error still exists, return to
PLUA		Error while uploading programs	the factory for repair.
DI En	53	Command error while	Check if there is any error in the program
FLFII		downloading programs	and download the program again.
Dior	54	Program exceeds memory	Cycle the power and download the program
FLOI		capacity or no program	again.
	55	Command error while executing	Check if there is any error in the program
FLFF		programs	and download the program again.
DISp	56	Chook and arror	Check if there is any error in the program
FLOII			and download the program again.
	57	No "END" command in the	Check if there is any error in the program
FLEU	57	program	and download the program again.
	58	The MC command is	Check if there is any error in the program
PLCr		continuously used for more than	and download the program again
		9 times	
PI dE	50	Error while downloading	Check if there is any error in the program
FLUI	39	programs	and download the program again.
	60	PLC scan time exceeds the	Check if the source code is correct and
		maximum allowable time	download the program again.

# 13-7 Fault Display and Treatment
[This page intentionally left blank]

## Appendix A. Revision History

Drive Firmware Version	Issued Edition	Revision History	Issued Date
V1.01	00	Newly established.	November, 2022

[This page intentionally left blank]