

篇名	接地系統介紹
發行日期	2016年10月
相關產品	接地系統, 接地
關鍵字	TN, TN-S, TN-C, TN-C-S, TT, IT,

【前言】

因應自動化的趨勢,現今產業大量使用電力設備與各式的供電系統,採用正確的接地系統以確保人員 與設備的安全乃是廠區的一大考量。 不同的設備適合的接地的方式不同,主要採用不同形式的接地 端作為接地電極,以一條接地線和接地電極,把需要接地的用電設備的漏電電流導致地面上。這些電 極和大地之間可能因為不同的接地電阻值而出現不同的電位差異。採用安全接地系統,主要有以下目的:

- 1. 防止漏電,保護操作人員於危險的電擊
- 2. 防止設備和線路損壞
- 3. 預防火災

【接地系統】

國際標準 IEC 60364 共區分三種標準的接地系統,分別使用 TN, TT, IT 作為識別碼。

第一字代表 接地點 與 電源設備(發電機或變壓器)的連接方式:

T: 直接連接在同一點接地;

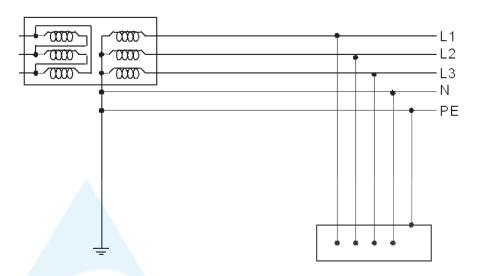
I: 不連接至接地點(絕緣的), 或有經由高阻抗做設備接地。

第二字代表 接地點 與 用電設備的連接方式:

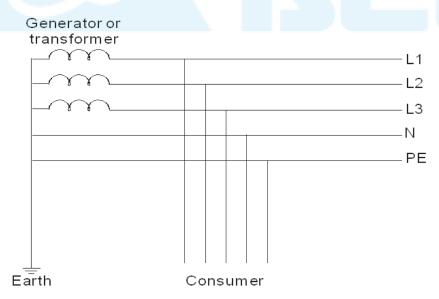
T: 直接連接至 大地, 指獨立於其電源供應系統的地;

N: 經由電源供應系統的接地點接地。

第三 與第四字 代表接地導線的位置:

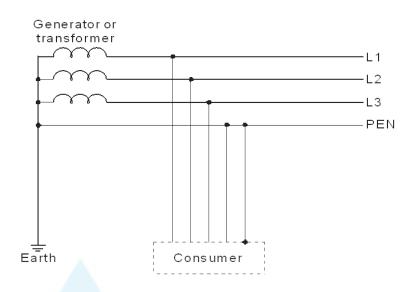

S: 中性點 與 大地分開;

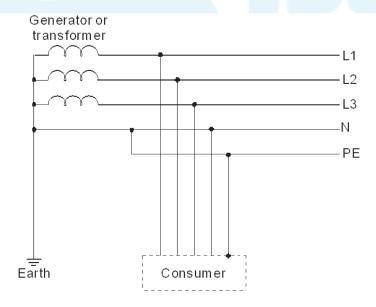
C: 中性點 與 大地並聯


TN 接地系統

- TN 系統: 用電設備中性點(N)是有連接到電源設備,譬如 變壓器 或 發電機 的接地點, 而用電設備的保護接地(PE)也是連接至電源設備的同一接地點。 通常是於電源變壓器的Y 接系統的地線,與機器設備的機殼框架地點都連接至同一接地端。
- *protective earth (PE*)保護接地. *neutral (N*)中性點.

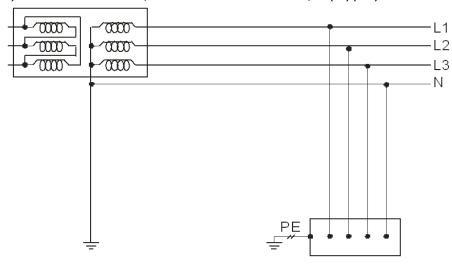
TN-S 接地系統


TN-S 系統: 電源設備與用電設備的保護接地(PE) 與中性點(N) 是使用分別的導線,只有在電源 側 例如於變壓器 或 發電機 的接地點才連接在一起。相等於三相五線式系統。

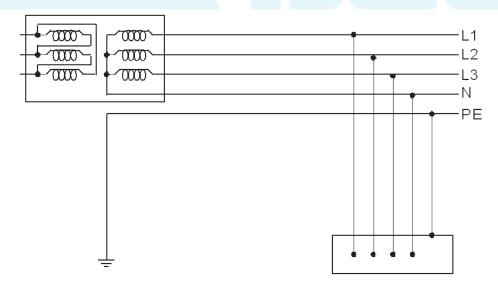

TN-C 接地系統

TN-C 系統:於用電設備的保護接地(PE) 與中性點(N) 是使用分別的導線,類似三相五線式系統。但是於電源測,保護接地(PE) 與中性點(N) 是使用相同的導線,類似三相四線式系統。

TN-C-S 接地系統


TN-C-S 系統: 部份系統使用組合式的 PEN 共同接地,雖然於使用端是分開的(PE) 保護接地線與 (N) 中性線. 但最終於電源側是PEN 共同接地,典型應用為配電站送到建築物後使用分開的 PE 保護接地線與 N 中性線,此種作法於實際應用上因為直接接地於很多點 能夠降低中性點斷線的風險,於英國稱為 protective multiple earthing (PME),於澳大利亞稱為 multiple earthed neutral (MEN)。

TT 接地系統


TT 系統: 電源側變壓器的中性點(N)與設備系統的中性點是同一接地點, 但使用設備系統的外殼框架保護接地(PE)是使用者就近接地,連接至另外一個接地點,此(N)(PE)兩個接地點是分別不同的接地。

IT 接地系統

IT 系統:於電源側變壓器的中性點(N)與用電設備的中性點是不接地的,而於使用者的機器設備外殼框架保護接地(PE)作接地。

- 在 **IT** 的電源網路上, 配電系統中性點(N)完全沒有連接至接地端,或是經由高阻抗的接地,於此種電源系統需使用隔離式的量測儀器來測試電阻。
- 於IT 的電源系統使用變頻器或是伺服驅動器時,不能使用外加濾波器或內建濾波器的機種,避免產生漏電電流。

【接地系統優缺點比較】

	TT	TN-S	П	TN-C		
人員安全	良好 必須裝設漏電保護 器(RCD)	良好 整體設備內必須有連續不中斷的 PE 保護接地線				
資產設備的 安全性	良好	差的	良好	差的		
	中等故障電流 (< 幾十安培)	高的故障電流 (約 1kA)	低電流於初次故障 (< 幾十 mA) 但高 的電流於再次發生 故障	高的故障電流 (約 1kA)		
電源利用效率	良好	良好	極佳的	良好		
EMC 作用	良好 - 有過電壓風險 - 等電位	極佳的 - 幾乎同電位	差的 (應避免使用) - 有過電壓風險 - 共模濾波器與突	差的 (不建議使用) - 中性點與保護接 地同一點.		
	問題點: - 需處理設備有高 洩漏電流問題 - 漏電保護器 (RCD Residual current device)	問題點:	波吸收器必須處理相對相的電位差 漏電保護器可能會常常誤動作相同於TN系統於再次故障	- 會有循環電流於 導線內(高磁場幅 射波) - 高的故障電流 (暫態干擾)		

	TN-S	TN-C	тт	IT
Safety of Personnel	Good Continuity of the PE conductor must be ensured throughout the installation	Good Continuity of the PE conductor must be ensured throughout the installation	Good RCD is mandatory	Good Continuity of the PE conductor must be ensured throughout the installation
Safety of property	Poor High fault current (around 1kA)	Poor High fault current (around 1kA)	Good Medium fault current (< a few dozen amperes)	Good Low current at the first fault (< a few dozen mA) but high current at the second fault
Availability of energy	Good	Good	Good	Excellent
EMC	Excellent	Poor	Good	Poor
	Few equipotential	(should not be use)	Over-voltage risk, Equipotential	(should be avoided)
	Problems: - Need to handle the high leaking currents problem of the device - High fault current (transient disturbances)	- Neutral and PE are the same - Circulation of disturbance currents in exposed conductive parts (high magnetic-field radiation) - High fault currents (transient disturbances)	Problems: - Need to handle the high leaking currents problem of the device - RCD (Residual-current device)	- Over-voltage risk - Common-mode filters and surge arrestors must handle the phase to phase voltage. - RCDs subject to nuisance tripping when common-mode capacitors are present - Equivalent to TN system for second fault