Europe

Czech Republic Delta Energy Systems (Czech Republic), spol.s r.o. Perucka 2482/7 120 00 Praha 2 Czech Republic T +420 272 019 330 F +420 271 751 799

Finland

Delta Energy Systems (Finland) Ov Juvan teollisuuskatu 15 02921 Espoo T +358 9 84966 0 F +358 9 84966 100

France

Delta Energy Systems (France) S.A. ZI du bois Chaland 2 15 rue des Pyrenees, Lisses 91056 Evry Cedex T +33 1 69 77 82 60 F +33 1 64 97 05 77

Germany

Delta Energy Systems (Switzerland) AG German Office Coesterweg 45, D-59494 Soest 59494 Soest T +49 2921 987 337 F +49 2921 987 396

Italy

Delta Energy Systems (Italy) S.R.L. Piazza Grazioli 18 00186 Roma T +39 06 699 41 209 F +39 06 699 42 293

The Netherlands

Deltronics Netherlands BV Zandsteen 15 2132 MZ Hoofddorp The Netherlands T +31 20 655 0900 F +31 20 655 0999

Poland

Delta Energy Systems (Poland) Sp. z.o.o. 23 Poleczki Str. 02-822 Warsaw T +48 22 335 26 00 F +48 22 335 26 01

Russia

Delta Energy Systems (Russia) Verevskaya Plaza II, office 503, Vereyskaya str.17 121357 Moscow, Russia T +7 495 644 32 40 F +7 495 644 32 41

Slovak Republic

DELTA ELECTRONICS (SLOVAKIA), s.r.o. Botanická 25/A, SR-841 04 Bratislava, T +421 (0)2 6541 1258 F +421 (0)2 6541 1283

Spain

Delta Energy Systems (Spain) S.L. Calle Luis I nø 60, Nave 1a, P.I. de Vallecas 28031 Madrid T +34 91 223 74 20 F +34 91 332 90 38

Sweden

Delta Energy Systems (Sweden) AB P.O.Box 3096 35033 Växiö T +46 470 70 68 16 F +46 470 70 68 90

Switzerland

Delta Energy Systems (Switzerland) AG Freiburgstrasse 251 3010 Bern-Bümpliz T +41 31 998 53 11 F +41 31 998 54 85

Turkev

Delta Greentech Electronic San. Ltd. Sti. Serifali Mevkii Barbaros Bulvari Sövlesi Sok No: 19, K1, Y.Dudullu-Umranive 34775 Istanbul T +90 216 499 9910 F +90 216 499 8070

United Kingdom

Delta Electronics Europe Ltd. 1 Redwood Court Peel Park, East Kilbride G74 5PF T +44 1355 588 888 F +44 1355 588 889

Americas

Argentina

Delta Greentech Sarmiento 1889 5A **Buenos Aires** T +5411 4372 310

Brazil

Delta Energy Systems (Brazil) S/A Rua Itapeva, Nº 26 - 3º andar 01332 000 - São Paulo - SP T +55 11 3568 3874 F +55 11 3568 3865

Colombia

Delta Greentech Calle 213 # 114-10 manzana 14 casa 25 Caminos de Arrayanes T +57 1 673 4927 F +57 1 673 4927

Middle-East & Africa

South Africa

Delta Energy Systems MEA (Switzerland) AG South Africa Representative Office Unit 305B, Lougardia Building, Cnr Embankment and Hendrik Verwoerd Drive, Centurion.0157.South Africa T +27 12 663 2714 F +27 86 667 0469

Asia Pacific

China

Delta GreenTech (China) Co., Ltd. No.238 Minxia Road. Pudong P.R.C 201209 Shanghai T +86 21 5863 5678 +86 21 5863 9595 F +86 21 5863 0003

India

Delta Power Solutions (India) Pvt. Ltd. Plot No. 43, Sector-35, HSIIDC, Gurgaon-122001, Harvana, India T +91 124 4874 900 F +91 124 4874 945

Taiwan

Delta Electronics Inc. 39 Section 2, Huandong Road, Shanhua Township Tainan County 74144, Taiwan T +886 6 505 6565 F +886 6 505 1919

Australia

Delta Energy Systems Australia Pty Ltd. Unit 20-21, 45 Normanby Road, Notting Hill VIC 3168, Australia T +61 3 9543 3720 F +61 3 9544 0606

Thailand

Delta Electronics (Thailand) Public Co., Ltd. 909 Soi 9, Moo 4, E.P.Z., Bangpoo Industrial Estate, Tambon Prakasa, Amphur Muang-samutprakarn, Samutprakarn Province 10280, Thailand T +662 709-2800 F +662 709-2833

Singapore

Delta Electronics Int'l (Singapore) Pte Ltd. 4 Kaki Bukit Ave 1, #05-04, Singapore 417939 T +65 6747 5155 F +65 6744 9288

The power behind competitiveness

Delta PQC Series **Power Quality Solution**

Active Power Filter	(APF)
Static VAR Generator	(SVG)

About Delta Group

Delta Group is the world's leading provider of power management and thermal management solutions, as well as a major source for components, visual displays, industrial automation, networking products, and renewable energy solutions. Delta Group focuses on three main businesses: power electronics, energy management, and smart green life. Delta Group has sales offices worldwide and manufacturing plants in Taiwan, China, Thailand, Japan, Mexico, India, Brazil, and Europe.

As a global leader in power electronics, Delta's mission is, "To provide innovative, clean and energy-efficient solutions for a better tomorrow." Delta is committed to environmental protection and has implemented green, lead-free production and recycling and waste management programs for many years.

More information about Delta Group can be found at www.deltaww.com

Delta's Quality

Products - Delta's quality ensures customer satisfaction

Delta insists on the strictest quality control and management in various phases from development to manufacturing to ensure customer satisfaction by embracing the philosophy "Do things right the first time." Maintaining and exceeding the highest quality standards makes Delta the first-choice supplier of many world-leading enterprises.

2010 Panasonic Electric Networks Certificate of Appreciation

Cisco Partner Collaboration

Excellence Award

2007 Intel Supplier Achievement Award

Rockwel Outstanding Performance Award

2008

Fuiitsu Siemens

Computers Preferred

2005 Siemens Communications Supplier of the Year Award

2008 Nokia Siemens Outstanding Performance

Cisco Supplier of the Year Award

2007~2008

Fabulous 50

Award

2004

Microsoft

Vendor of the Year Award

Delta in China has 23 R&D Centers with over 2,000 R&D engineers and 22 plants with a total manufacturing area of over 7,000,000 sq. ft. (680,000 m2).

Delta's Green Business

Delta was nominated as one of the "Global Top 100 Low-Carbon Emission Enterprises" by the CNBC European Business Magazine.

Delta has won the "Corporate Social Responsibility Award and Honorary Award" from Global Views Magazine for four consecutive years.

Delta has won the "Corporate Citizenship Award" from Common Wealth Magazine for three consecutive years.

Delta Group's mission statement, "To provide innovative, clean and energy-efficient solutions for a better tomorrow", focuses on social responsibility and represents Delta's confidence in putting advanced technology into practice on behalf of sustainability.

Delta Group's president has said, "If Delta's power efficiency is improved by just 1%, there can be fewer power plants in the world."

Delta's Technology

Global Top 500 in Research and Development

Investing 5% of its annual operating revenues in R&D, Delta Group ranked No. 431 in a world ranking by the Department of Trade and Industry, United Kingdom.

The IEEE selects the three best theses every year to honor outstanding contributions to the academic fields of electrical and electronics engineering.

In September 2009, Delta's thesis "Performance Evaluation of Bridgeless PFC Boost Rectifiers" stood out from 313 other theses and won the best thesis award issued by Prof. Deepak Divan, the IEEE Chairman, who presented the best thesis award to Milan M. Jovanovi, the manager of Delta's R&D center in USA.

2004

Power Quality and Harmonics

Power Quality Issues Overview

Power quality determines the suitability of electric power for consumer devices. There are three main contributors to low voltage and poor power quality problems:

- Harmonic Pollution causes extra stress on a power supply system and reduces reliability.
- Reactive Power loads the power supply system unnecessarily.
- Load Imbalance increases neutral current and neutral to earth voltage.

Harmonics

Normally, power system generators produce a clean sinusoidal voltage waveform at their terminals. However, a lot of modern electronic equipment such as VFDs, UPSs, LEDs, battery chargers, and other equipment powered by switched-mode power supply (SMPS) equipment, generates non-sinusoidal current injected into the power system, which causes electrical harmonic pollution.

Harmonics Standard

Based on "IEEE Recommended Practice and Requirements for Harmonic Control in Electrical Power Systems" (IEEE 519-2014), the grid voltage distortion limits are:

Bus Voltage V at PCC	Individual harmonics (%)	Total harmonics distortion THD (%)
$V \leq 1.0$ kV	5.0	8.0
$1kV < V \le 69kV$	3.0	5.0
$69kV < V \le 161kV$	1.5	2.5
161kV < V	1.0	1.5

Cument Distortion Limits for Systems Rated 120V through 69kV

Maximum harmonic current distortion in percent of I_L								
Individual harmonic order (Odd Harmonics)								
I_{sc}/I_{L}	3 ≤ h < 11	11 ≤ h < 17	17 ≤ h < 23	23 ≤ h < 35	35 ≤ h < 50	TDD		
<20*	4.0	2.0	1.5	0.6	0.3	5.0		
20<50	7.0	3.5	2.5	1.0	0.5	8.0		
50<100	10.0	4.5	4.0	1.5	0.7	12.0		
100<1000	12.0	5.5	5.0	2.0	1.0	15.0		
>1000	15.0	7.0	6.0	2.5	1.4	20.0		
	Even	harmonics are limited	to 25% of the odd har	monic limits above.				

Current distortion that results in a DC offset, such as half-wave converters, are not allowed.

* All power generation equipment is limited to these values of current distortion, regardless of actual I_{sc}/I_L

where

 I_{sc} = maximum short-circuit current at PCC.

 I_{L} = maximum demand load current (fundamental frequency component) at PCC.

Reactive Power

In most cases, reactive power is the power that magnetic equipment such as transformers, motors and relays, needs to produce magnetizing flux, which is inductive. In some cases, long distance power cables and some loads generate capacitive reactive power. Both inductive and capacitive reactive power will increase the apparent power (kVA), demanding larger transformers and cable size.

Load Imbalance

Every three-phase current can be divided into positive, negative and zero sequences. Negative and zero sequences cause load imbalance.

Power Quality Problems

Poor Power Quality can be described as any event related to the electrical network that ultimately results in a financial loss. Possible consequences of poor Power Quality include:

Harmonic resonance that sabotages power distribution system stability

Equipment failure or malfunctions due to harmonics

Increased investment in oversized transformers and cables

Increase in power system losses and heat

Electronic communications interference

Electrical penalty bills due to low power factor

Unexpected power supply failures such as breakers tripping, fuses blowing

Delta Power Quality Solution Evolution

Delta PQC series power quality solution consists of the Active Power Filter (APF) and Static VAR Generator (SVG). Both provide an active compensation solution based on power electronics technology.

Compared with conventional passive compensation solutions such as capacitor banks, an active compensation solution improves the reliability and quality of the power distribution system.

Delta PQC Series Active Power Filter (APF)

APF Principle

Transformer

Delta's PQC Series APF is connected in parallel with non-linear loads, and uses one set of current transformers (CT) to detect the load current. It calculates each order harmonic current by FFT algorithms in its DSP microchips, and then generates a compensating current with the same amplitude but opposite phase angles to the detected harmonic current, which cancels out the original load harmonics.

The PQC series APF not only eliminates harmonic current from the load side, but it also mitigates harmonic voltage caused by harmonic currents. The APF system can also improve power factor (PF) and correct load imbalances in the power system.

Note: CT is a critical part of the APF system, and it can be purchased by users themselves, following Delta's suggestions on CT specification.

Grid Current

Comparison between Capacitor Bank, SVG and APF

Item	Capacitor Bank	SVG	APF
Harmonic Filtering	Unavailable	Unavailable	Eliminate 2nd~50th harmonics (selectable)
Reactive Power Compensation	Discretely compensate inductive reactive power only	Steplessly compensate both inductive and capacitive reactive power	Steplessly compensate both inductive and capacitive reactive power
Imbalance Correction	Unavailable	Available	Available
Response Speed	slow, can't track dynamic reactive power (20ms~5s)	fast, can track dynamic reactive power (<0.1ms)	fast, can track dynamic harmonic & reactive loads (<0.1ms)
Harmonic Resonance Problem	Potential resonance between capacitor and transformer sabotages power system stability.	Active compensation technology avoids harmonic resonance from the principle.	Active compensation technology avoids harmonic resonance from the principle.
Output Ability	Actual output capacity is less than the rated capacity.	Actual output capacity is the same as rated capacity.	Actual output capacity is the same as rated capacity.

APF Structure

Delta PQC Series APF has a modular design. the Delta Active Power Filter system consists of one or several APF modules and a display. There are two types of displays, one is Touch Panel Human Machine Interface (HMI), which is touch-screen type, and the other one is non-touch-screen type, call Liquid Crystal Monitor (LCM).

Active Power

Filter (APF)

Each APF module is an independent harmonic filtering system, and users can change the harmonic filtering system rating by adding or removing APF modules.

According to the mounting type, Delta PQC series APF can be divided into Modular APF (rack mounting) and Wallmounted APF.

Modular APF

APF modules and HMI/ LCM can be embedded in Delta's standard APF cabinet or a customized cabinet. There are breakers, cable terminals and Surge Protection Device (SPD) in the APF cabinet.

According to cable terminal type, a modular APF can be divided into two types:

- Draw type modular APF (hot-swappable)
- Fixed type modular APF (not hot-swappable)

Breakers HMI or LCM APF Modules

APF cabinet with 7 modules

APF module

Wall-mounted APF

Delta's Wall-mounted APF can be installed on a wall, which is suitable for low rating applications, and wall-mounted type HMI/ LCM can be installed on the wall-mounted APF module, along with a mounting bracket to provide support and protection.

7

Wall-mounted APF module

Wall-mounted APF with HMI and Bracket

APF Compensation Performance

Delta's PQC Series APF can perfectly mitigate harmonic current, and suppress harmonic voltage caused by the harmonic current. When the APF capacity is sufficient and background harmonic voltage is low, the APF ensures excellent compensation performance at full load condition, as below.

- THDu (Total Harmonic Distortion of Voltage) < 3%
- THDi (Total Harmonic Distortion of Current) < 5%
- PF (Power Factor) ≥ 0.99 (improves both leading and lagging PF)
- Neutral Current Attenuation Ratio ($\frac{I_{N(Before)} I_{N(After)}}{I_{N(Before)}}$)>95%

Delta's PQC Series APF Actual Compensation Performance

Application: Textile Industry

from 32.5% to 2.9%.

Current waveform and spectrum are recorded by Fluke 435, as below.

8

Non-linear Loads: Variable Frequency Drive (VFD).

Compensation Result: Current harmonic distortion (THDi) was reduced

Application: Foundry Industry

Non-linear Loads: Electric Welder

Compensation Result: Current harmonic distortion (THDi) was reduced from 70% to 4.4%, load imbalance was reduced from 102% to 6.1%.

Current waveform and spectrum are recorded by Fluke 435, as below.

Current Waveform

559 я 11/05/13 18:42:35 50Hz 30 WYF EN50160 VOLT AMP RUN BEFORE

AFTER

HOLD Run

HOLD

v **⊡-**C

Current Spectrum

HARMO	NICS TAB	LE				HARMO	NICS TAB	LE		
		© 0:00:1	1	9 C				0:00:11		5 🔤 - 🤇
Amp	A	B	<u> </u>	N		Amp	8	8	<u> </u>	N
THD%f	70.0	16.6	69.3	49.0	A	THD%f	4.4	3.3	3.9	111.1
H3%f	61.1	17.0	60.6	26.9		H3%f	3.1	1.5	2.2	43.0
H5%f	16.9	5.0	16.7	16.3		H5%f	0.9	1.2	0.4	35.9
H7%f	6.2	1.8	6.1	10.9		H7%f	0.3	1.1	0.5	18.1
H9%f	6.0	1.8	6.0	8.8		H9%f	0.1	0.3	0.3	10.3
H11%f	1.4	1.1	1.4	7.3		H11%f	0.5	0.2	0.4	9.0
H13%f	3.0	0.6	3.0	6.1		H13%f	0.2	0.8	0.2	6.8
H15%f	0.9	0.5	0.9	4.9		H15%f	0.2	0.4	0.3	8.3
11/05/13	18:41:52	230V 50Hz	3Ø WYE	EN50160		11/05/13	19:25:49	230V 50Hz 3	ØWYE	EN50160
V <mark>A</mark> W V&A		HARMONIC GRAPH	TREND	HOLD		V A W V&A		HARMONIC GRAPH	TREND	HOL RUI

BEFORE

AFTER

					_				
nbala	nce						Unbala	nce	
		©- 0:0	0:02	9 m-C					
	Vneg.		Aneg.	Azero				Vnes	3.
Inba1.()	%) 0.9	0.0	102	0.5			Unbal.()	() ()	1.3
	A	В	C	N					A
lfund Iz	233.4 50.035	235.6	231.8	1.8]⇒	•	Vfund Hz	234 50.0	1.1 34
	R	B	C	N	1				A
iV(°) iA(°) Ifund 1705/13	0.0 - 106.3 552 18:57:52	- 120.7 - 43.2 8 2300 50H	-240.9 -285.7 551 12 38 WYE	-224.5 -312.7 0 EH50160	A		ΦV(°) ΦA(°) Af und 11/05/13	(- 76 4: 19:19:).0 5.0 32 40
		\rightarrow	TREND	RUN				1.0	

DD		
DD	שאכ	

	Vneg.	Vzero	Aneg.	Azero
Jnba1.(%) 0.3	0.1	6.1	1.5
	R	В	C	N
lfund Iz	234.1 50.034	234.2	233.1	1.9
	R	B	C	N
5V(°)	0.0	- 120.3	-240.3	-221.9
5A(°)	- 76.0	- 199.0	-313.1	- 90.6
fund	432	385	405	0
1/05/13	19:19:40	230V 50H	z 3.0' WYE	EN50160
		⇒	TREND	HOL

AFTER

Application: Automobile Industry Non-linear Loads: Thyristor driven heater Compensation Result: Voltage harmonic distortion (THDu) was reduced from 5.5% to 1.3%.

BEFORE

HARMONICS TABLE					
Volt	AB				
THD%r	5.3				
H5%r	3.9				
H7%r H9%r	2.8 0.1				
H11%r H13%r	1.1				
H15%r	0.1				
01/08/10	12:28:43 39				

Voltage waveform and spectrum are recorded by Fluke 435, as below.

AFTER

Voltage Spectrum

BEFORE

AFTER

Delta PQC Series APF System Selection

PQC Series APF Naming Rule

Delta PQC Series APF Features

- Multifunctional: Harmonic, reactive power and imbalance compensation
- High harmonic filtering rate: Up to 98%
- Excellent reactive compensation: High speed, Precise (-0.99≤PF≤0.99), Step-less, Bi-directional (capacitive and inductance) compensation
- Excellent imbalance correction: Both negative and zero sequence, mitigates neutral current
- Wide input voltage & frequency range, adapts to tough electrical environments
- Low thermal loss (\leq 3% of rated APF kVA), efficiency \geq 97%
- High stability: Infinite impedance to grid, avoids harmonic resonance problems
- Flexible application: Modular design, embedded in standard or customized cabinet
- Easy installation and maintenance: Plug-in installation for APF module replacement and expansion
- Wide capacity range: 50A~525A for a single cabinet, up 10 cabinets in parallel
- Environmental adaptability: -10~50°C temperature, compatible with diesel generator
- Complete protection: Grid Over/Under voltage, APF over current, over temperature, and more. All faults are recorded in the event log, which is convenient for failure analysis

PQC Series APF Model

In

PF System Type	Structure	Model Name	APF Capacity	Dimension (W×D×H)	Weight (kg)
	Wall-mounted	PQCA-400-50-50-WM4	50A	440×174×600mm	30
dependent Module System	Danie Taria Madular	PQCA-400-50-50DM3(4)	50A	440×522×174mm	40
	Draw Type Modular	PQCA-400-75-75DM3(4)	75A	440×522×174mm	42
		PQCA-400-50-50FM3(4)	50A	440×522×174mm	30
	Eine d Trace Mardalan	PQCA-400-75-75FM3(4)	75A	440×522×174mm	42
	Fixed Type Modular	PQCA-400-100-100FM3(4)	100A	605×728.2×220mm	65
		PQCA-690-100-100FM3	100A	605×728.2×270mm	78
[PQCA-400-50-50DC3(4)	50A	600×800×2000mm	208
		PQCA-400-75-75DC3(4)	75A	600×800×2000mm	210
		PQCA-400-75-150DC3(4)	150A	600×800×2000mm	260
	Danie Time Ochiest	PQCA-400-75-225DC3(4)	225A	600×800×2000mm	309
	Draw Type Cabinet	PQCA-400-75-300DC3(4)	300A	600×800×2000mm	359
		PQCA-400-75-375DC3(4)	375A	600×800×2000mm	408
		PQCA-400-75-450DC3(4)	450A	600×800×2000mm	458
		PQCA-400-75-525DC3(4)	525A	600×800×2000mm	507
		PQCA-400-50-50 FC3(4)	50A	600×800×2000mm	200
		PQCA-400-75-75FC3(4)	75A	600×800×2000mm	203
		PQCA-400-50-100FC3(4)	100A	600x800x2000mm	235
		PQCA-400-100-100FC3(4)	100A	800×1000×2000mm	265
		PQCA-400-50-150FC3(4)	150A	600x800x2000mm	270
		PQCA-400-75-150FC3(4)	150A	600×800×2000mm	245
		PQCA-400-50-200FC3(4)	200A	600x800x2000mm	320
Cabinet System Multiple Modules)		PQCA-400-100-200FC3(4)	200A	800×1000×2000mm	330
. ,		PQCA-400-75-225FC3(4)	225A	600×800×2000mm	287
		PQCA-400-50-250FC3(4)	250A	600x800x2000mm	360
		PQCA-400-50-300FC3(4)	300A	600x800x2000mm	395
	Fixed Type Cabinet	PQCA-400-100-300FC3(4)	300A	800×1000×2000mm	395
		PQCA-400-50-350FC3(4)	350A	600x800x2000mm	430
		PQCA-400-75-375FC3(4)	375A	600×800×2000mm	371
		PQCA-400-100-400FC3(4)	400A	800×1000×2000mm	460
		PQCA-400-75-450FC3(4)	450A	600×800×2000mm	413
		PQCA-400-100-500FC3(4)	500A	800×1000×2000mm	522
		PQCA-400-75-525FC3(4)	525A	600×800×2000mm	455
		PQCA-690-100-100FC3	100A	800×1000×2000mm	280
		PQCA-690-100-200FC3	200A	800×1000×2000mm	360
		PQCA-690-100-300FC3	300A	800×1000×2000mm	440
		PQCA-690-100-400FC3	400A	800×1000×2000mm	520
		PQCA-690-100-500FC3	500A	800×1000×2000mm	600

Delta PQC Series APF Technical Specification

	Rated Voltage	AC 400V			AC 690V	
	Input Voltage Range	AC 308V	~480V		AC 432V~880V	
	Electric Connection	3P3W / 3	3P4W		3P3W	
	Rated Frequency		50(60)Hz	z ±10%		
	Input Voltage THD Range		≤15	6%		
	Rated Current per Module	50Amp 75An	np	100Amp	100Amp	
	Rated Current per Cabinet	50~525Amp (modu	ule comb	ination)	100~500Amp (module combination)	
	Redundancy	Each module is	an indep	endent filtering	system	
	Harmonic Elimination Range	2rd ~ 50th order	r (Selecta	able)	2rd ~ 31st order (Selectable)	
Electrical Specification	Harmonic Filtering Degree	0 ~ 100% programn	nable per	r harmonic in Ar	mpere value	
	Harmonic Filtering Performance	Filter up to 98% harmonic	s at rateo filter	d load, THDv<3 ing	%, THDi<5% after	
	Reactive Power Compensation Capability	Both inductive	and cap	acitive reactive	power	
	Reactive Power Compensation Performance	PF≥0.99 after compensation (if the APF capacity is sufficient)				
	Imbalance Correction Capability	Mitigate negative and zero sequence			Mitigate negative sequence	
	Full Response time		<20	ms		
	Instant Response time		<100	Dus		
	Thermal Loss	≤3% of A	APF rated	d capacity (kVA))	
	Output Current Limitation	Automat	tic (100%	rated capacity)	
	Parallel Expansion(System)	Up to 10 Racks(7 module cabinet)	es per	Up to 10 Rack cal	ks(5 modules per binet)	
	MTBF	>100,000 hours				
	Switching Frequency	60kHz		30kHz	20kHz	
Control Technology	Controller		DSP co	ontrol		
Control recimology	Communication	Modbus Protocol, RS232/485				
	Monitoring	PQC Monitor Software (Optional)				
	IP Grade of Cabinet	IP20,	IP30 or c	customization		
	Cooling method	Intellio	gent force	ed air cooling		
Physical Specification	Noise Level	< 65dB(A) @	1m (Mod	ule)	< 70dB(A) @1m (Module)	
,	Dust Filter		Optic	onal		
	Dimension	Refer to APF Model table				
	Weight	Refer to APF Model table				
	Ambient Temperature	-10~50°C with 100% ca	apacity, d	e-rating running	g from 50~55°C	
Environmental Reguirement	Relative Humidity		0~9	5%		
	Altitude	≤1000m rated capacity	/, 1000~2	2000m(derating	1% per 100m)	

Delta PQC series Static Var Generator (SVG)

SVG Principle

The principle of the SVG is very similar to that of Active Power Filter, as demonstrated in the picture below. When the load is generating inductive or capacitive current, it makes load current lagging or leading the voltage. SVG detects the phase angle difference and generates leading or lagging current into the grid, making the phase angle of current almost the same as that of voltage on the transformer side, which means fundamental power factor is unit.

Delta's PQC series SVG is also capable of correcting load imbalance.

Note: CT is a critical part of the SVG system, and it can be purchased by users themselves, following Delta's suggestions on CT specification.

SVG Structure

Delta PQC Series SVG is also in modular structure, and the Delta SVG system consists of one or several SVG modules and a display. There are two types of displays, one is Touch Panel Human Machine Interface (HMI), which is touchscreen type, and the other one is non-touch-screen type, call Liquid Crystal Monitor (LCM).

SVG's HMI or LCM can be shared with Delta APF modules.

Each SVG module is an independent reactive power compensation system, and users can change the SVG rating by adding or removing SVG modules.

SVG modules and LCM panel can be embedded in Delta's standard SVG cabinet or in a customized cabinet. There are breakers, cable terminals and Surge Protection Device (SPD) in the SVG cabinet.

SVG Module

HMI

LCM

SVG Compensation Performance

Delta's PQC Series SVG can rapidly and continuously compensate both inductive and capacitive reactive power, and correct load imbalance. With sufficient capacity, the SVG ensures excellent fundamental power factor improvement performance.

• Fundamental Power Factor ($Cos\phi$) \geq 0.99 (improves both leading and lagging PF)

Delta's PQC Series SVG Actual Compensation Performance

Power and Energy

Loads: Inductive Motors (around 47%).

rower & Lifeigy				
FUND 🔮				
	L1	1		
kU kVR kVAR PF Cos¤ Arms	248.6 533.2 +471.8 0.47 0.47 2385	24 54 \$48 0 24		
	L1			
Vrms	223.80	225		
04/14/13	16:53:01	230V		
		EN		

Application: Harbor

Loads: Inductive Motors.

Compensation Results: Fundamental Power Factor (Coso) was improved from 0.82 to 0.99, current RMS value was reduced from 1335A to 1116A

Power and Energy were recorded by Fluke 435, as below.

Application: Petrochemical Industry

Compensation Result: Fundamental Power Factor (Coso) was improved from 0.44 to 0.98, current RMS value was reduced from 2436A to 1289A

Power and Energy were recorded by Fluke 435, as below.

Power and Energy

BEFORE

AFTER

PQC Series SVG Naming Rule

PQCS	
	Wiring Type: 3 3P3W 4 3P4W
	System Type: M Module C Cabinet System
	Module Type: F Rear Connection Fixed Type P Front Connection Fixed Type W Wall-mounted Type
	SVG System Capacity: 50 50kvar 100 100kvar 150 150kvar 200 200kvar 300 300kvar 500- 500kvar
	700 700kvar System capacity is a combination of SVG modules capacity.
	SVG Module Capacity: 50 50kvar 100 100kvar
	Rated Voltage: 400400V
	Product Type: PQC series Static VAR Generator (SVG)

PQC Series SVG Model

SVG System Type	Structure	Model Name	SVG Capacity	Dimension (W×D×H)	Weight (kg)
Independent Module System	Wall-mounted	PQCS-400-50-50WM4	50kvar	440×174×600mm	30
	Fixed Type Modular	PQCS-400-50-50FM3(4)	50kvar	440×522×174mm	30
		PQCS-400-100-100PM3(4)	100kvar	600x606x190mm	57
Cabinet System (Multiple Modules)	Fixed Type Cabinet	PQCS-400-50-50FC3(4)	50kvar	600×800×2000mm	200
		PQCS-400-50-100FC3(4)	100kvar	600×800×2000mm	240
		PQCS-400-50-150FC3(4)	150kvar	600×800×2000mm	280
		PQCS-400-50-200FC3(4)	200kvar	600×800×2000mm	320
		PQCS-400-50-250FC3(4)	250kvar	600×800×2000mm	360
		PQCS-400-50-300FC3(4)	300kvar	600×800×2000mm	400
		PQCS-400-50-350FC3(4)	350kvar	600×800×2000mm	440
		PQCS-400-100-100PC3(4)	100kvar	800x1000x2000mm	370
		PQCS-400-100-200PC3(4)	200kvar	800x1000x2000mm	430
		PQCS-400-100-300PC3(4)	300kvar	800x1000x2000mm	490
		PQCS-400-100-400PC3(4)	400kvar	800x1000x2000mm	540
		PQCS-400-100-500PC3(4)	500kvar	800x1000x2000mm	600
		PQCS-400-100-600PC3(4)	600kvar	800x1000x2200mm	710
		PQCS-400-100-700PC3(4)	700kvar	800x1000x2200mm	770

Delta PQC Series SVG Features

- Multifunctional: Reactive power and imbalance compensation
- inductance) compensation
- Excellent imbalance correction: Both negative and zero sequence, mitigates neutral current
- Wide input voltage & frequency range, adapts to tough electrical environment
- Low thermal loss (\leq 3% of rated SVG capacity), efficiency \geq 97%
- High stability: Infinite impedance to grid, avoids harmonic resonance problem
- Flexible application: Modular design, embedded in standard or customized cabinet
- Easy installation and maintenance: Easy installation for APF module replacement and expansion
- Wide capacity range: 50kvar~350kvar for a single cabinet, up to 10 cabinets in parallel
- Environmental adaptability: -10~50°C temperature, compatible with diesel generators
- Complete protection: Grid over/under voltage, SVG over current, over temperature, and others. All faults recorded in event log, convenient for failure analysis

• Excellent reactive compensation: High speed, Precise (-0.99≤Cosφ≤0.99), Step-less, Bi-directional (capacitive and

Delta PQC Series SVG Technical Specification

	Rated Voltage	AC 400V		
	Input Voltage Range	AC 308V~480V		
	Electric Connection	3P3W / 3P4W		
	Rated Frequency	50(60)Hz ±10%		
	Rated Capacity per Module	50kvar		
	Rated Current per Cabinet	50~350kvar (module combination)		
	Redundancy	Each module is an independent reactive compensation system		
Electrical Specification	Reactive Power Compensation Capability	Both inductive and capacitive reactive power		
	Reactive Power Compensation Performance	Cosφ≥0.99 after compensation (if the SVG capacity is sufficient)		
	Imbalance Correction Capability	Mitigate negative and zero sequence		
	Full Response time	<20ms		
	Instant Response time	<100us		
	Thermal Loss	≤3% of SVG rated capacity		
	Output Current Limitation	Automatic (100% rated capacity)		
	Parallel Expansion(System)	Up to 10 Racks(7 modules per cabinet)		
	MTBF	>100,000 hours		
	Switching Frequency	30kHz		
Control Tochnology	Controller	DSP control		
Control Technology	Communication	Modbus Protocol, RS232/485		
	Monitoring	PQC Monitor Software (Optional)		
Physical Specification	IP Grade of Cabinet	IP20, IP30 or customization		
	Cooling method	Intelligent forced air cooling		
	Noise Level	< 60dB(A) @1m (Module)		
	Dust Filter	Optional		
	Dimension	Refer to SVG Model table		
	Weight	Refer to SVG Model table		
Environmental Requirement	Ambient Temperature	-10~40°C with 100% capacity, de-rating running from 40~55°C		
	Relative Humidity	0~95%		
	Altitude	≤1000m rated capacity, 1000~2000m(derating 1% per 100m)		

Special Features of Delta Power Quality Solution

High Adaptability

• Wider range of operating temperatures

Delta PQC series APF & SVG can normally work without any derating from -10°C~ 50°C, which is suitable for most applications

Withstands extreme electrical condition

Delta's PQC series APF & SVG can withstand severe harmonic distortion of voltage, they can work normally under conditions with THDu (total harmonic distortion of voltage) up to 15%

Compatible with diesel generators

Simple and Flexible Application

- The Delta PQC series APF & SVG's modular structure makes it easy for installation, maintenance and capacity expansion.
- APF & SVG modules can be embedded in Delta's standard cabinets or third-party cabinets, making it possible to customize cabinets for special requirements.

Excellent Compensation Capability

• Delta's PQC series APF & SVG applies 3-level inverter topology and up to 60 kHz switching frequency, which provide excellent power quality compensation accuracy, response speed and output ability.

High Reliability

- Module redundancy technology
- Intelligent air cooling technology
- Top brand electronic components
- Advanced production technology

2007~ 2008 Forbes Asia's Fabulous 50

2009 Frost & Sullivan Green Excellence Award for Corporate Leadership

System is Certified by ISO 9001 and ISO 14001 Standards

IECO Certificate of Hazardous Substance Process Management

The **PQC series APF** protects electrical equipment for a leading petrochemical company in

The **PQC series APF** protects the power distribution system of one of India's top three textile

The **PQC series APF** boosts the power supply stability for a global automobile parts provider in India.

The **PQC series APF** protects the power distribution system from harmonics interference for the largest telecom company in India.

> The **PQC series APF** helps to reduce the electricity bills for an international rubber & tire company in Thailand.

The **PQC series APF** protects the power distribution system for a public sports facility in Australia.

21

The **PQC series APF** protects the power distribution system from harmonics for Asia's largest chemical fiber company in China.

The **PQC series APF** protects the power distribution system for a top petrochemical company in China

The PQC series APF boosts power supply stability for public metro system in three different cities of China.

The **PQC series APF** protects the power distribution system from harmonics interference for the largest telecom company in China.

The **PQC series APF** protects the power distribution system for a public water supply company in South Korea.

The PQC series APF boosts the power supply stability for an electronic components & battery material company in South Korea.

