DELPHI SERIES

FEATURES
- High Efficiency: 93.0% @ 5Vin, 3.3V/3A out
- Small size and low profile:
 - 0.80” x 0.45” x 0.27” (SMD)
 - 0.90” x 0.40” x 0.25” (SIP)
- Standard footprint and pinout
- Resistor-based trim
- Output voltage programmable from 0.75V to 3.63V via external resistors
- Pre-bias startup
- No minimum load required
- Fixed frequency operation
- Input UVLO, OCP
- Remote ON/OFF
- ISO 9001, TL9000, ISO 14001, QS 9000, OHSAS 18001 certified manufacturing facility
- UL/cUL 60950 (US & Canada) Recognized, and TUV (EN60950)- pending
- CE mark meets 73/23/EEC and 93/68/EEC- pending

APPLICATIONS
- Telecom/DataCom
- Distributed power architectures
- Servers and workstations
- LAN/WAN applications
- Data processing applications

OPTIONS
- Positive On/Off logic
- SIP package

Delphi DNT04, Non-Isolated Point of Load DC/DC Power Modules: 2.4~5.5Vin, 0.75~3.63Vo, 3A out

The Delphi Series DNT04, 2.4-5.5V input, single output, non-isolated Point of Load DC/DC converters are the latest offering from a world leader in power systems technology and manufacturing — Delta Electronics, Inc. The DNT04 series provides a programmable output voltage from 0.75V to 3.63V using external resistors. This product family is available in surface mount or SIP package and provides up to 3A of output current in an industry standard footprint. With creative design technology and optimization of component placement, these converters possess outstanding electrical and thermal performance, as well as extremely high reliability under highly stressful operating conditions. The DNT04, 3A modules have excellent thermal performance and can provide full output current at up to 85°C ambient temperature with no airflow.
TECHNICAL SPECIFICATIONS

(T_{A} = 25^\circ C, \text{ airflow rate} = 300 \text{ LFM}, V_{in} = 5 \text{ Vdc, nominal Vout unless otherwise noted.})

PARAMETER

<table>
<thead>
<tr>
<th>Parameter</th>
<th>NOTES and CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT CHARACTERISTICS</td>
<td></td>
</tr>
<tr>
<td>Operating Input Voltage</td>
<td>(V_{o} \leq V_{in} - 0.5V)</td>
</tr>
<tr>
<td>Maximum Input Current</td>
<td>(V_{in}=4.5V, V_{o}=3.3V, I_{o}=3A)</td>
</tr>
<tr>
<td>No-Load Input Current</td>
<td>(20) mA</td>
</tr>
<tr>
<td>Off Converter Input Current</td>
<td>(1) mA</td>
</tr>
<tr>
<td>Inrush Transient</td>
<td>(V_{in}=2.4V) to (5.5V, I_{o}=I_{o, min}) to (I_{o, max})</td>
</tr>
<tr>
<td>Recommended Input Fuse</td>
<td>TBD</td>
</tr>
<tr>
<td>OUTPUT CHARACTERISTICS</td>
<td></td>
</tr>
<tr>
<td>Output Voltage Set Point</td>
<td>(V_{in}=5V, I_{o}=I_{o, max})</td>
</tr>
<tr>
<td>Output Voltage Adjustable Range</td>
<td>(0.7525, 3.63) % of (V_{o, set})</td>
</tr>
<tr>
<td>Output Voltage Regulation</td>
<td></td>
</tr>
<tr>
<td>Output Ripple and Noise</td>
<td>(5\text{Hz to } 20\text{MHz bandwidth})</td>
</tr>
<tr>
<td>Output Current Range</td>
<td>(0) to (3) A</td>
</tr>
<tr>
<td>Maximum Output Startup Capacitive Load</td>
<td>(1000 \mu F) for (ESR \geq 1\text{m} \Omega), (3000 \mu F) for (ESR \geq 10\text{m} \Omega)</td>
</tr>
<tr>
<td>EFFICIENCY</td>
<td></td>
</tr>
<tr>
<td>Vo=3.3V</td>
<td>(93.0) %</td>
</tr>
<tr>
<td>Vo=2.5V</td>
<td>(90.0) %</td>
</tr>
<tr>
<td>Vo=1.8V</td>
<td>(87.0) %</td>
</tr>
<tr>
<td>Vo=1.5V</td>
<td>(85.0) %</td>
</tr>
<tr>
<td>Vo=1.2V</td>
<td>(83.0) %</td>
</tr>
<tr>
<td>Vo=0.75V</td>
<td>(77.0) %</td>
</tr>
<tr>
<td>FEATURE CHARACTERISTICS</td>
<td></td>
</tr>
<tr>
<td>Switching Frequency</td>
<td>(300) kHz</td>
</tr>
<tr>
<td>ON/OFF Control, (For Negative logic)</td>
<td></td>
</tr>
<tr>
<td>Logic Low Voltage</td>
<td>Module On, (V_{on})</td>
</tr>
<tr>
<td>Logic High Voltage</td>
<td>Module Off, (V_{off})</td>
</tr>
<tr>
<td>Logic Low Current</td>
<td>Module On, (I_{on})</td>
</tr>
<tr>
<td>Logic High Current</td>
<td>Module Off, (I_{off})</td>
</tr>
<tr>
<td>ON/OFF Control, (For Positive logic)</td>
<td></td>
</tr>
<tr>
<td>Logic High Voltage</td>
<td>Module On, (V_{on})</td>
</tr>
<tr>
<td>Logic Low Voltage</td>
<td>Module Off, (V_{off})</td>
</tr>
<tr>
<td>Logic High Current</td>
<td>Module On, (I_{on})</td>
</tr>
<tr>
<td>Logic Low Current</td>
<td>Module Off, (I_{off})</td>
</tr>
<tr>
<td>GENERAL SPECIFICATIONS</td>
<td></td>
</tr>
<tr>
<td>MTBF</td>
<td>(21.44) M hours</td>
</tr>
<tr>
<td>Weight</td>
<td>(2.9) grams</td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS CURVES

Figure 1: Converter efficiency vs. output current (5Vin/3.3Vout)

Figure 2: Converter efficiency vs. output current (5Vin/2.5Vout)

Figure 3: Converter efficiency vs. output current (5Vin/1.8Vout)

Figure 4: Converter efficiency vs. output current (5Vin/1.5Vout)

Figure 5: Converter efficiency vs. output current (5Vin/1.2Vout)

Figure 6: Converter efficiency vs. output current (5Vin/0.75Vout)
ELECTRICAL CHARACTERISTICS CURVES (CON.)

Figure 7: Output ripple & noise at 5Vin, 3.3V/3A out

Figure 8: Output ripple & noise at 5Vin, 2.5V/3A out

Figure 9: Output ripple & noise at 5Vin, 1.8V/3A out

Figure 10: Output ripple & noise at 5Vin, 1.5V/3A out

Figure 11: Output ripple and noise at 5Vin, 1.2V/3A out

Figure 12: Output ripple and noise at 5Vin, 0.75V/3A out
ELECTRICAL CHARACTERISTICS CURVES (CON.)

Figure 13: Turn on delay time at 5Vin, 3.3V/3A out
Top: Vout, 2V/div; Bottom: Vin, 5V/div, 2mS/div

Figure 14: Turn on delay time at 5Vin, 2.5V/3A out
Top: Vout, 2V/div; Bottom: Vin, 5V/div, 2mS/div

Figure 15: Turn on delay time at 5Vin, 1.8V/3A out
Top: Vout, 2V/div; Bottom: Vin, 5V/div, 2mS/div

Figure 16: Turn on delay time at 5Vin, 1.5V/3A out
Top: Vout, 2V/div; Bottom: Vin, 5V/div, 2mS/div

Figure 17: Turn on delay time at 5Vin, 1.2V/3A out
Top: Vout, 2V/div; Bottom: Vin, 5V/div, 2mS/div

Figure 18: Turn on delay time at 5Vin, 0.75V/3A out
Top: Vout, 2V/div; Bottom: Vin, 5V/div, 2mS/div
ELECTRICAL CHARACTERISTICS CURVES

Figure 19: Typical transient response to step load change at 2.5A/μS from 100% to 50% of Io, max at 5Vin, 3.3Vout (Cout = 1uF ceramic, 10μF tantalum)

Figure 20: Typical transient response to step load change at 2.5A/μS from 50% to 100% of Io, max at 5Vin, 3.3Vout (Cout = 1uF ceramic, 10μF tantalum)

Figure 21: Output short circuit current 5Vin, 0.75Vout
5A/div, 20mS/div

Figure 22: Turn on with Prebias: 5Vin, 3.3V/0A out, Vbias = 1.0Vdc
TOP: Vout, 2.5V/div, Bottom: Vin, 5V/div,
TEST CONFIGURATIONS

Note: Input reflected-ripple current is measured with a simulated source inductance. Current is measured at the input of the module.

Figure 23: Input reflected-ripple test setup

DESIGN CONSIDERATIONS

Input Source Impedance

To maintain low noise and ripple at the input voltage, it is critical to use low ESR capacitors at the input to the module. The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the module. An input capacitance must be placed close to the modules input pins to filter ripple current and ensure module stability in the presence of inductive traces that supply the input voltage to the module.

Safety Considerations

For safety-agency approval the power module must be installed in compliance with the spacing and separation requirements of the end-use safety agency standards.

For the converter output to be considered meeting the requirements of safety extra-low voltage (SELV), the input must meet SELV requirements. The power module has extra-low voltage (ELV) outputs when all inputs are ELV.

The input to these units is to be provided with an adequate time-delay fuse in the ungrounded lead.

Note: All measurements are taken at the module terminals. When the module is not soldered (via socket), place Kelvin connections at module terminals to avoid measurement errors due to contact resistance.

\[\eta = \left(\frac{V_o \times I_o}{V_i \times I_i} \right) \times 100 \% \]
FEATURES DESCRIPTIONS

Remote On/Off

The DNT series power modules have an On/Off pin for remote On/Off operation. Both positive and negative On/Off logic options are available in the DNT series power modules.

For positive logic module, connect an open collector (NPN) transistor or open drain (N channel) MOSFET between the On/Off pin and the GND pin (see figure 28). Positive logic On/Off signal turns the module ON during the logic high and turns the module OFF during the logic low. When the positive On/Off function is not used, leave the pin floating or tie to Vin (module will be On).

For negative logic module, the On/Off pin is pulled high with an external pull-up resistor (see figure 29). Negative logic On/Off signal turns the module OFF during logic high and turns the module ON during logic low. If the negative On/Off function is not used, leave the pin floating or tie to GND. (module will be On)

\[
R_{trim} = \left[\frac{21070}{V_o - 0.7525} - 5110 \right] \Omega
\]

For example, to program the output voltage of the DNT module to 1.8Vdc, Rtrim is calculated as follows:

\[
R_{trim} = \left[\frac{21070}{1.8 - 0.7525} - 5110 \right] \Omega = 15K\Omega
\]

DNT can also be programmed by apply a voltage between the TRIM and GND pins (Figure 31). The following equation can be used to determine the value of Vtrim needed for a desired output voltage Vo:

\[
V_{trim} = 0.7 - 0.1698 \times (V_o - 0.7525)
\]

For example, to program the output voltage of a DNT module to 3.3 Vdc, Vtrim is calculated as follows

\[
V_{trim} = 0.7 - 0.1698 \times (3.3 - 0.7525) = 0.267V
\]

Over-Current Protection

To provide protection in an output over load fault condition, the unit is equipped with internal over-current protection. When the over-current protection is triggered, the unit enters hiccup mode. The units operate normally once the fault condition is removed.

FEATURES DESCRIPTIONS (CON.)

Output Voltage Programming

The output voltage of the DNT can be programmed to any voltage between 0.75Vdc and 3.63Vdc by connecting one resistor (shown as Rtrim in Figure 30) between the TRIM and GND pins of the module. Without this external resistor, the output voltage of the module is 0.7525 Vdc.

To calculate the value of the resistor Rtrim for a particular output voltage Vo, please use the following equation:

\[
R_{trim} = \left[\frac{21070}{V_o - 0.7525} - 5110 \right] \Omega
\]

For example, to program the output voltage of the DNT module to 1.8Vdc, Rtrim is calculated as follows:

\[
R_{trim} = \left[\frac{21070}{1.8 - 0.7525} - 5110 \right] \Omega = 15K\Omega
\]
FEATURE DESCRIPTIONS (CON.)

Table 1 provides Rtrim values required for some common output voltages, while Table 2 provides value of external voltage source, Vtrim, for the same common output voltages. By using a 1% tolerance trim resistor, set point tolerance of ±2% can be achieved as specified in the electrical specification.

Table 1

<table>
<thead>
<tr>
<th>VO (V)</th>
<th>Rtrim (KΩ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7525</td>
<td>Open</td>
</tr>
<tr>
<td>1.2</td>
<td>41.973</td>
</tr>
<tr>
<td>1.5</td>
<td>23.077</td>
</tr>
<tr>
<td>1.8</td>
<td>15.004</td>
</tr>
<tr>
<td>2.5</td>
<td>6.947</td>
</tr>
<tr>
<td>3.3</td>
<td>3.160</td>
</tr>
<tr>
<td>3.63</td>
<td>2.212</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>VO (V)</th>
<th>Vtrim (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7525</td>
<td>Open</td>
</tr>
<tr>
<td>1.2</td>
<td>0.6240</td>
</tr>
<tr>
<td>1.5</td>
<td>0.5731</td>
</tr>
<tr>
<td>1.8</td>
<td>0.5221</td>
</tr>
<tr>
<td>2.5</td>
<td>0.4033</td>
</tr>
<tr>
<td>3.3</td>
<td>0.2674</td>
</tr>
<tr>
<td>3.63</td>
<td>0.2114</td>
</tr>
</tbody>
</table>

Figure 29: Circuit Configuration for programming output voltage using external voltage source

The amount of power delivered by the module is the voltage at the output terminals multiplied by the output current. When using the trim feature, the output voltage of the module can be increased, which at the same output current would increase the power output of the module. Care should be taken to ensure that the maximum output power of the module must not exceed the maximum rated power (Vo.set x Io.max ≤ P max).

Voltage Margining

Output voltage margining can be implemented in the DNT modules by connecting a resistor, Rmargin-up, from the Trim pin to the ground pin for margining-up the output voltage and by connecting a resistor, Rmargin-down, from the Trim pin to the output pin for margining-down. Figure 32 shows the circuit configuration for output voltage margining. If unused, leave the trim pin unconnected. A calculation tool is available from the evaluation procedure which computes the values of Rmargin-up and Rmargin-down for a specific output voltage and margin percentage.

Figure 30: Circuit configuration for output voltage margining
THERMAL CONSIDERATIONS

Thermal management is an important part of the system design. To ensure proper, reliable operation, sufficient cooling of the power module is needed over the entire temperature range of the module. Convection cooling is usually the dominant mode of heat transfer.

Hence, the choice of equipment to characterize the thermal performance of the power module is a wind tunnel.

Thermal Testing Setup

Delta’s DC/DC power modules are characterized in heated vertical wind tunnels that simulate the thermal environments encountered in most electronics equipment. This type of equipment commonly uses vertically mounted circuit cards in cabinet racks in which the power modules are mounted.

The following figure shows the wind tunnel characterization setup. The power module is mounted on a test PWB and is vertically positioned within the wind tunnel. The height of this fan duct is constantly kept at 25.4mm (1”).

Thermal Derating

Heat can be removed by increasing airflow over the module. To enhance system reliability, the power module should always be operated below the maximum operating temperature. If the temperature exceeds the maximum module temperature, reliability of the unit may be affected.

Figure 31: Wind tunnel test setup
LEAD (Sn/Pb) PROCESS RECOMMEND TEMP. PROFILE

LEAD FREE (SAC) PROCESS RECOMMEND TEMP. PROFILE
MECHANICAL DRAWING

SMD PACKAGE

SIDE VIEW BOTTOM VIEW

BACK VIEW SIDE VIEW

SIP PACKAGE (OPTIONAL)

RECOMMEND PWB PAD LAYOUT

RECOMMEND PWB PAD LAYOUT

NOTES:
DIMENSIONS ARE IN MILLIMETERS AND (INCHES)
TOLERANCES: X.XXmm±0.5mm(X.XX in.±0.02 in.)
X.XXmm±0.25mm(X.XXX in.±0.010 in.)

PIN# FUNCTION
1 Vout
2 TRIM
3 GND
4 Vin
5 On/Off
PART NUMBERING SYSTEM

<table>
<thead>
<tr>
<th>Product Series</th>
<th>Input Voltage</th>
<th>Numbers of Outputs</th>
<th>Output Voltage</th>
<th>Package Type</th>
<th>Output Current</th>
<th>On/Off logic</th>
<th>Option Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNT- 3A/5A</td>
<td>04 - 2.4V~5.5V</td>
<td>S - Single</td>
<td>0A0 - Programmable</td>
<td>R - SIP</td>
<td>03 - 3A</td>
<td>N- negative P- positive</td>
<td>F- RoHS 6/6 (Lead Free)</td>
</tr>
</tbody>
</table>

MODEL LIST

<table>
<thead>
<tr>
<th>Model Name</th>
<th>Package</th>
<th>Input Voltage</th>
<th>Output Voltage</th>
<th>Output Current</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNT04S0A0S03NFA</td>
<td>SMD</td>
<td>2.4V ~ 5.5Vdc</td>
<td>0.75V ~ 3.63Vdc</td>
<td>3A</td>
<td>93.0%</td>
</tr>
<tr>
<td>DNT04S0A0R03NFA</td>
<td>SIP</td>
<td>2.4V ~ 5.5Vdc</td>
<td>0.75V ~ 3.63Vdc</td>
<td>3A</td>
<td>94.0%</td>
</tr>
<tr>
<td>DNT04S0A0S05NFA</td>
<td>SMD</td>
<td>2.4V ~ 5.5Vdc</td>
<td>0.75V ~ 3.63Vdc</td>
<td>5A</td>
<td>93.5%</td>
</tr>
<tr>
<td>DNT04S0A0R05NFA</td>
<td>SIP</td>
<td>2.4V ~ 5.5Vdc</td>
<td>0.75V ~ 3.63Vdc</td>
<td>5A</td>
<td>93.0%</td>
</tr>
</tbody>
</table>

CONTACT: www.deltaww.com/dcdc
USA:
Telephone: 978-656-3993
Fax: 978-656-3964
Email: DCDC@delta-corp.com

Europe:
Telephone: +31-20-655-0967
Fax: +31-20-655-0999
Email: DCDC@delta-es.com

Asia & the rest of world:
Telephone: +886 3 4526107 x6220~6224
Fax: +886 3 4513485
Email: DCDC@delta.com.tw

WARRANTY
Delta offers a two (2) year limited warranty. Complete warranty information is listed on our web site or is available upon request from Delta.

Information furnished by Delta is believed to be accurate and reliable. However, no responsibility is assumed by Delta for its use, nor for any infringements of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Delta. Delta reserves the right to revise these specifications at any time, without notice.

DS_DNT04SMD03_07182012